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Evaluation

◮ About 50% weightage to assignments.

◮ About 50% weightage to exams.
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Programs as functions

Functions transform inputs to outputs:

x f f(x)

A typical program consists of rules to produce an output from an
input

Computation is the process of applying the rules described by a
program
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Building up programs

How do we describe the rules?

◮ Start with basic “built in” functions

◮ Use these to build more complex functions
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Building up programs . . .

Suppose

◮ . . . there were the whole numbers, {0,1,2,...}

◮ . . . and one function, succ (successor)

succ 0 = 1

succ 1 = 2

succ 2 = 3

. . .

Then, we may define plusTwo, as

plusTwo n = succ (succ n)

by composing two copies of succ.

Composing plusTwo and succ we get

plusThree n = succ (plusTwo n)
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Addition....

◮ plus n m means apply succ to n m times

plus n m = succ(succ(...(succ
︸ ︷︷ ︸

m times

n)...))

◮ How do we describe this rule concisely for all n and m?
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Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

◮ Suppose we know how to compute plus n m

Then plus n (succ m) is succ (plus n m)

Unravelling the definition yields a computation

◮ plus 7 3 = plus 7 (succ 2)

= succ (plus 7 2)

= succ (plus 7 (succ 1))

= succ (succ (plus 7 1))

= succ (succ (plus 7 (succ 0)))

= succ (succ (succ (plus 7 0)))

= succ (succ (succ 7)) = succ (succ 8)

= succ 9 = 10
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Recursive definitions . . .

Multiplication is repeated addition

mult n m = plus n (plus n (...(plus n
︸ ︷︷ ︸

m times

0)...))

The rule for multiplication

◮ mult n 0 = 0, for all n

◮ mult n (succ m) = plus n (mult n m), for all n and m
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Types

Functions operate on values of a fixed type

◮ succ takes a whole number as input and produces a whole
number

◮ plus and mult take two whole numbers as input and produce
another whole number

What if we wanted to define sqrt, the square root function?

◮ Even if we restrict the input to whole numbers, output will be
a real number

Other types

◮ capitalize ’a’ = ’A’, capitalize ’b’ = ’B’, . . .

◮ Inputs and outputs are letters or “characters”



Functional programming

Haskell: a programming language for describing functions



Functional programming

Haskell: a programming language for describing functions

A description in Haskell of a function f has two parts:

1. Types of inputs and outputs

2. Rule for computing the output from the input



Functional programming

Haskell: a programming language for describing functions

A description in Haskell of a function f has two parts:

1. Types of inputs and outputs

2. Rule for computing the output from the input

Example:

sqr :: Int -> Int Type definition
sqr x = x*x Computation rule



Basic types and operations in Haskell

◮ Int Integers

◮ Operations +, -, *
◮ Functions div, mod
◮ Note: / takes two Ints as input and produces a Float

◮ Float

◮ Char

◮ Values written in single quotes — ’z’, ’&’, . . .

◮ Bool

◮ Values True and False.
◮ Operations &&, ||, not
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Defining functions

◮ Boolean expressions

◮ Comparisons on Int: ==, /=, <, <=, >, >=

◮ Boolean combinations && (and), || (or) and not (negation).

◮ xor takes two arguments of Bool and checks that exactly one
of them is True

xor :: Bool -> Bool -> Bool

xor b1 b2 = (b1 && (not b2)) || ((not b1) && b2)

◮ inorder takes three arguments of Int and checks that the
numbers are in order

inorder:: Int -> Int -> Int -> Bool

inorder x y z = (x <= y) && (y <= z)
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Definition by cases: Pattern matching

◮ Defining by pattern matching

xor :: Bool -> Bool -> Bool

xor True False = True

xor False True = True

xor b1 b2 = False

◮ When does an invocation match a definition?

◮ If definition argument is a constant, the value supplied must
be the same constant

◮ If definition argument is a variable, any value supplied matches
(and is substituted for that variable)

◮ Use first definition that matches, top to bottom

◮ xor False True matches second definition

◮ xor True True matches third definition
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Definition by cases: Pattern matching

◮ Can mix variables and constants in patterns

or :: Bool -> Bool -> Bool

or True b = True

or b True = True

or b1 b2 = False

◮ or True False matches first definition

◮ or False True matches second definition

◮ or False False matches third definition



Definition by cases: Pattern matching

and :: Bool -> Bool -> Bool

and True b = b

and False b = False
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Recursive definitions

◮ As we saw earlier, many functions are defined recursively

◮ Base case: Explicit value for f (0)
◮ Inductive step: Define f (n) in terms of n and f (n−1),. . . , f (0)

◮ For example, factorial

◮ 0! = 1
◮ n! = n · (n−1)!

◮ In Haskell

factorial :: Int -> Int

factorial 0 = 1

factorial n = n * (factorial (n-1))

◮ Note the bracketing in factorial (n-1)

◮ factorial n-1 would be bracketed as (factorial n) -1

◮ No guarantee of termination!

◮ What does factorial (-1) generate?



Functions with multiple inputs

plus m n = m + n

◮ What is the type of plus?

◮ Mathematically, plus : Z× Z → Z

◮ Need to know arity of functions
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Functions with multiple inputs . . .

◮ Assume all functions take only one argument!

plus m n = m + n

m plus

plus m

n

m+n

◮ Type of plus

◮ plus m: input is Int, output is Int
◮ plus: input is Int, output is a function Int -> Int
◮ plus :: Int -> (Int -> Int)



Functions with multiple inputs . . .

◮ tplus m n p = m + n + p

m tplus

tplus m

n

tplus m n

p

m+n+p

◮ tplus m n p :: Int -> (Int -> (Int -> Int))
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Running Haskell programs

◮ Write your Haskell program using a text editor

◮ vi, Notepad, . . .

◮ Store it in a file with extension .hs

◮ Use the interactive interpreter ghci

◮ Within ghci you can type the following commands:

:load filename — Loads a Haskell file
:type expression — Print the type of a Haskell expression
:quit — exit from ghci

:? — Print ”help” about more ghci commands

◮ Experiment with ghci as a “calculator”
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Conditional definitions

◮ Conditional definitions using guards

◮ For instance, “fix” the function to work for negative inputs

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 0 = n * (factorial (n-1))

◮ Second definition has two parts

◮ Each part is guarded by a condition
◮ Guards are tested top to bottom

◮ Indentation to show that definition continues on multiple lines

◮ Multiple definitions could have different forms

◮ Pattern matching for factorial 0
◮ Conditional definition for factorial n
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Conditional definitions . . .

◮ Guards may overlap

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 1 = n * (factorial (n-1))

| n > 0 = n * (factorial (n-1))

◮ Guards may not cover all cases

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 1 = n * (factorial (n-1))

◮ No match for factorial 1

Program error: pattern match failure: factorial 1


