
Introduction to Programming: Lecture 19

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

22 October 2013

http://www.cmi.ac.in/~kumar


Actions: More details

◮ Actions are terms of type IO a for some a.



Actions: More details

◮ Actions are terms of type IO a for some a.

◮ Two basic functions used to construct and combine actions
are:

return :: a -> IO a

>>= :: IO a -> (a -> IO b) -> IO b



Actions: More details

◮ Actions are terms of type IO a for some a.

◮ Two basic functions used to construct and combine actions
are:

return :: a -> IO a

>>= :: IO a -> (a -> IO b) -> IO b

◮ Executing the action (ac1 >>= ac2) executes ac1 unboxes
the resulting value, applies ac2 to get an action and executes
that action.



Actions: More details

◮ Actions are terms of type IO a for some a.

◮ Two basic functions used to construct and combine actions
are:

return :: a -> IO a

>>= :: IO a -> (a -> IO b) -> IO b

◮ Executing the action (ac1 >>= ac2) executes ac1 unboxes
the resulting value, applies ac2 to get an action and executes
that action.

Actually, IO is an example of a Monad and these functions are
available in any Monad.



Actions: More details

◮ Actions are terms of type IO a for some a.

◮ Two basic functions used to construct and combine actions
are:

return :: a -> IO a

>>= :: IO a -> (a -> IO b) -> IO b

◮ Executing the action (ac1 >>= ac2) executes ac1 unboxes
the resulting value, applies ac2 to get an action and executes
that action.

Actually, IO is an example of a Monad and these functions are
available in any Monad.

◮ There are other functions such as readLn, putStrLn, ...

that are specfic to certain IO types.



Composing Actions

◮ Read a line and print it.



Composing Actions

◮ Read a line and print it.

getLine >>= putStrLn



Composing Actions

◮ Read a line and print it.

getLine >>= putStrLn

◮ What if we want to print the length of the string?



Composing Actions

◮ Read a line and print it.

getLine >>= putStrLn

◮ What if we want to print the length of the string?

getLine :: IO String



Composing Actions

◮ Read a line and print it.

getLine >>= putStrLn

◮ What if we want to print the length of the string?

getLine :: IO String

◮ That should be coupled with a term of type
String -> IO () which prints the length of a given string.



Composing Actions

◮ Read a line and print it.

getLine >>= putStrLn

◮ What if we want to print the length of the string?

getLine :: IO String

◮ That should be coupled with a term of type
String -> IO () which prints the length of a given string.

getLine >>= \x -> (putStrLn (show (length x)))



Composing Actions

◮ Read a line and print it.

getLine >>= putStrLn

◮ What if we want to print the length of the string?

getLine :: IO String

◮ That should be coupled with a term of type
String -> IO () which prints the length of a given string.

getLine >>= \x -> (putStrLn (show (length x)))

◮ What if we wanted to print the length two times?



Composing Actions

◮ Read a line and print it.

getLine >>= putStrLn

◮ What if we want to print the length of the string?

getLine :: IO String

◮ That should be coupled with a term of type
String -> IO () which prints the length of a given string.

getLine >>= \x -> (putStrLn (show (length x)))

◮ What if we wanted to print the length two times?

getLine >>= \x ->

(putStrLn (show (length x)) >>=

putStrLn (show (length x)))



Composing Actions

◮ Read a line and print it.

getLine >>= putStrLn

◮ What if we want to print the length of the string?

getLine :: IO String

◮ That should be coupled with a term of type
String -> IO () which prints the length of a given string.

getLine >>= \x -> (putStrLn (show (length x)))

◮ What if we wanted to print the length two times?

getLine >>= \x ->

(putStrLn (show (length x)) >>=

putStrLn (show (length x)))

◮ Alas, that does not type check!



Composing Actions

◮ Read a line and print it.

getLine >>= putStrLn

◮ What if we want to print the length of the string?

getLine :: IO String

◮ That should be coupled with a term of type
String -> IO () which prints the length of a given string.

getLine >>= \x -> (putStrLn (show (length x)))

◮ What if we wanted to print the length two times?

getLine >>= \x ->

(putStrLn (show (length x)) >>=

putStrLn (show (length x)))

◮ Alas, that does not type check!

getLine >>= \x ->

(putStrLn (show (length x)) >>=

\y -> putStrLn (show (length x)))



The operator >>

p >> q = p >>= \n -> q



The operator >>

p >> q = p >>= \n -> q

◮ Thus we may rewrite the previous program as



The operator >>

p >> q = p >>= \n -> q

◮ Thus we may rewrite the previous program as

getLine >>= \x ->

(putStrLn (show (length x)) >>

putStrLn (show (length x)))



Translating do ... using >>=

◮ A single actions needs no do

do ---> exp

exp



Translating do ... using >>=

◮ A single actions needs no do

do ---> exp

exp

◮ No <- in the first action,



Translating do ... using >>=

◮ A single actions needs no do

do ---> exp

exp

◮ No <- in the first action, any value it returns can be thrown
away!

do ---> exp >> do

exp S

S



Translating do ... using >>=

◮ A single actions needs no do

do ---> exp

exp

◮ No <- in the first action, any value it returns can be thrown
away!

do ---> exp >> do

exp S

S

◮ name <- exp is the first action.



Translating do ... using >>=

◮ A single actions needs no do

do ---> exp

exp

◮ No <- in the first action, any value it returns can be thrown
away!

do ---> exp >> do

exp S

S

◮ name <- exp is the first action. Bind the value returned by
the first action to the name name and ...

do ---> exp >>=

name <- exp \name -> do

S S



Example

main = do

putStrLn ("Please enter your name:")

name <- getLine

putStrLn ("Hello " ++ name)



Example

main = do

putStrLn ("Please enter your name:")

name <- getLine

putStrLn ("Hello " ++ name)

❀

main = putStrLn ("Please enter your name:") >>

do

name <- getLine

putStrLn ("Hello " ++ name)



Example

main = do

putStrLn ("Please enter your name:")

name <- getLine

putStrLn ("Hello " ++ name)

❀

main = putStrLn ("Please enter your name:") >>

do

name <- getLine

putStrLn ("Hello " ++ name)

❀

main = putStrLn ("Please enter your name:") >>

getLine >>=

\name ->

do

putStrLn ("Hello " ++ name)

❀



Example ...

main = putStrLn ("Please enter your name:") >>

getLine >>=

\name ->

do

putStrLn ("Hello " ++ name)



Example ...

main = putStrLn ("Please enter your name:") >>

getLine >>=

\name ->

do

putStrLn ("Hello " ++ name)

❀

main = putStrLn ("Please enter your name:") >>

getLine >>=

\name ->

putStrLn ("Hello " ++ name)



Reading and Writing into Files

◮ To supply input from a file to an executable we can use input
redirection

$./myprogram < inputfile



Reading and Writing into Files

◮ To supply input from a file to an executable we can use input
redirection

$./myprogram < inputfile

◮ The output of a program can be saved in a file we can use
output redirection

$./myprogram > outputfile



Reading and Writing into Files

◮ To supply input from a file to an executable we can use input
redirection

$./myprogram < inputfile

◮ The output of a program can be saved in a file we can use
output redirection

$./myprogram > outputfile

◮ We can redirect input and output together

$./myprogram < inputfile > outputfile



Reading and Writing into Files

◮ To supply input from a file to an executable we can use input
redirection

$./myprogram < inputfile

◮ The output of a program can be saved in a file we can use
output redirection

$./myprogram > outputfile

◮ We can redirect input and output together

$./myprogram < inputfile > outputfile

◮ File input output can also be done directly from within the
program.



File I/O ...

◮ To read or write from file, it has to be opened in the
approriate mode.

myHandle <- openFile "inputfile" ReadMode



File I/O ...

◮ To read or write from file, it has to be opened in the
approriate mode.

myHandle <- openFile "inputfile" ReadMode

◮ The type of openFile is

FilePath -> IOMode -> IO Handle



File I/O ...

◮ To read or write from file, it has to be opened in the
approriate mode.

myHandle <- openFile "inputfile" ReadMode

◮ The type of openFile is

FilePath -> IOMode -> IO Handle

It takes the name of the file, the mode it which it is to be
opened, and returns a handle.



File I/O ...

◮ To read or write from file, it has to be opened in the
approriate mode.

myHandle <- openFile "inputfile" ReadMode

◮ The type of openFile is

FilePath -> IOMode -> IO Handle

It takes the name of the file, the mode it which it is to be
opened, and returns a handle.

◮ The mode can be one of ReadMode, WriteMode,
AppendMode and ReadWriteMode.



File I/O ...

◮ To read or write from file, it has to be opened in the
approriate mode.

myHandle <- openFile "inputfile" ReadMode

◮ The type of openFile is

FilePath -> IOMode -> IO Handle

It takes the name of the file, the mode it which it is to be
opened, and returns a handle.

◮ The mode can be one of ReadMode, WriteMode,
AppendMode and ReadWriteMode.

◮ WriteMode begins by creating the file from scratch, deleting
anything that is already there.

◮ AppendMode appends to the end of an existing file and
creating the file if it does not exist.

◮ The handle is used in operations pertaining to the opened file.



File I/O ...

◮ To read or write from file, it has to be opened in the
approriate mode.

myHandle <- openFile "inputfile" ReadMode

◮ The type of openFile is

FilePath -> IOMode -> IO Handle

It takes the name of the file, the mode it which it is to be
opened, and returns a handle.

◮ The mode can be one of ReadMode, WriteMode,
AppendMode and ReadWriteMode.

◮ WriteMode begins by creating the file from scratch, deleting
anything that is already there.

◮ AppendMode appends to the end of an existing file and
creating the file if it does not exist.

◮ The handle is used in operations pertaining to the opened file.
◮ The function hClose :: Handle -> IO () closes the file.



File I/O ...

◮ To read or write from file, it has to be opened in the
approriate mode.

myHandle <- openFile "inputfile" ReadMode

◮ The type of openFile is

FilePath -> IOMode -> IO Handle

It takes the name of the file, the mode it which it is to be
opened, and returns a handle.

◮ The mode can be one of ReadMode, WriteMode,
AppendMode and ReadWriteMode.

◮ WriteMode begins by creating the file from scratch, deleting
anything that is already there.

◮ AppendMode appends to the end of an existing file and
creating the file if it does not exist.

◮ The handle is used in operations pertaining to the opened file.
◮ The function hClose :: Handle -> IO () closes the file.
◮ The module System.IO has to be imported.



File I/O

◮ Once a file is open we can perform I/O operations using a
variety of functions.



File I/O

◮ Once a file is open we can perform I/O operations using a
variety of functions.

◮ To read a line we can use

hGetLine :: Handle -> IO String



File I/O

◮ Once a file is open we can perform I/O operations using a
variety of functions.

◮ To read a line we can use

hGetLine :: Handle -> IO String

◮ Starts from the first position.
◮ Each successive call continues reading from the position where

the where the previous call ended.



File I/O

◮ Once a file is open we can perform I/O operations using a
variety of functions.

◮ To read a line we can use

hGetLine :: Handle -> IO String

◮ Starts from the first position.
◮ Each successive call continues reading from the position where

the where the previous call ended.

and to write to a file we can use

hPutStrLn :: Handle -> String -> IO ()



File I/O

◮ Once a file is open we can perform I/O operations using a
variety of functions.

◮ To read a line we can use

hGetLine :: Handle -> IO String

◮ Starts from the first position.
◮ Each successive call continues reading from the position where

the where the previous call ended.

and to write to a file we can use

hPutStrLn :: Handle -> String -> IO ()

◮ To read other types combine hGetLine with the function

read :: Read a => String -> a that works like readLn



File I/O

◮ Once a file is open we can perform I/O operations using a
variety of functions.

◮ To read a line we can use

hGetLine :: Handle -> IO String

◮ Starts from the first position.
◮ Each successive call continues reading from the position where

the where the previous call ended.

and to write to a file we can use

hPutStrLn :: Handle -> String -> IO ()

◮ To read other types combine hGetLine with the function

read :: Read a => String -> a that works like readLn

◮ Here is function to read in an Int from a line

hReadInt h = (hGetLine h) >>=

\x -> return ((read :: Int) x)



File I/O – examples

◮ Copy two lines from the file FileA to the file FileB

copyOneLine :: Handle -> Handle -> IO ()

copyOneLine hi ho = do

inp <- hGetLine hi

hPutStrLn ho inp

main = do

hinp <- openFile "FileA" ReadMode

hout <- openFile "FileB" WriteMode

copyOneLine hinp hout

copyOneLine hinp hout

hClose hinp

hClose hout



Copying Files

◮ To copy the entire file, we must know when to stop.



Copying Files

◮ To copy the entire file, we must know when to stop.

The function hIsEOF :: Handle -> IO Bool ”returns”
True if the current position has reached the end of the file.



Copying Files

◮ To copy the entire file, we must know when to stop.

The function hIsEOF :: Handle -> IO Bool ”returns”
True if the current position has reached the end of the file.

◮ We can copy a files using

copyAll :: Handle -> Handle -> IO ()

copyAll hi ho =

do

over <- hIsEOF hi

if over

then return ()

else

do

copyOneLine hi ho

copyAll hi ho



The stdin,stdout and stderr

◮ The Handle stdin is available to read from the standard input
which is the keyboard unless the input has been redirected.



The stdin,stdout and stderr

◮ The Handle stdin is available to read from the standard input
which is the keyboard unless the input has been redirected.

◮ The Handle stdout is available to write to the standard
output which is the screen unless the output has been
redirected.



The stdin,stdout and stderr

◮ The Handle stdin is available to read from the standard input
which is the keyboard unless the input has been redirected.

◮ The Handle stdout is available to write to the standard
output which is the screen unless the output has been
redirected.

◮ The Handle stderr is available to write to the standard error,
where error messages are printed, again set to the screen
unless explicitely redirected.



The stdin,stdout and stderr

◮ The Handle stdin is available to read from the standard input
which is the keyboard unless the input has been redirected.

◮ The Handle stdout is available to write to the standard
output which is the screen unless the output has been
redirected.

◮ The Handle stderr is available to write to the standard error,
where error messages are printed, again set to the screen
unless explicitely redirected.

copyAll stdin stdout will act like echo



The stdin,stdout and stderr

◮ The Handle stdin is available to read from the standard input
which is the keyboard unless the input has been redirected.

◮ The Handle stdout is available to write to the standard
output which is the screen unless the output has been
redirected.

◮ The Handle stderr is available to write to the standard error,
where error messages are printed, again set to the screen
unless explicitely redirected.

copyAll stdin stdout will act like echo

◮ To generate EOF from the keyboard use ^D



Moving around a file

◮ A file is a sequence of characters. The positions are numbered
starting at 0.



Moving around a file

◮ A file is a sequence of characters. The positions are numbered
starting at 0.

◮ The Handle maintains our current position within the file.



Moving around a file

◮ A file is a sequence of characters. The positions are numbered
starting at 0.

◮ The Handle maintains our current position within the file.

◮ Each time we read or write a character the position increases
by 1.



Moving around a file

◮ A file is a sequence of characters. The positions are numbered
starting at 0.

◮ The Handle maintains our current position within the file.

◮ Each time we read or write a character the position increases
by 1.

◮ The function hTell ”returns” the current position.



Moving around a file

◮ A file is a sequence of characters. The positions are numbered
starting at 0.

◮ The Handle maintains our current position within the file.

◮ Each time we read or write a character the position increases
by 1.

◮ The function hTell ”returns” the current position.

◮ The function hSeek can be used to move to a different
position within the file.

◮ Relative to the current position (RelativeSeek)
◮ Relative to beginning of the file (AbsoluteSeek)
◮ Relative to the end of the file (SeekFromEnd)



Seek and Tell

◮ Write at the word ”The” at the beginning of the file.



Seek and Tell

◮ Write at the word ”The” at the beginning of the file.
hSeek h AbsoluteSeek 0

hPutChar h ’T’

hPutChar h ’h’

hPutChar h ’e’

Assumes that h is a handle to a file opened in write or
read-write mode.



Seek and Tell

◮ Write at the word ”The” at the beginning of the file.
hSeek h AbsoluteSeek 0

hPutChar h ’T’

hPutChar h ’h’

hPutChar h ’e’

Assumes that h is a handle to a file opened in write or
read-write mode.

◮ Copy the current character to the next position.



Seek and Tell

◮ Write at the word ”The” at the beginning of the file.
hSeek h AbsoluteSeek 0

hPutChar h ’T’

hPutChar h ’h’

hPutChar h ’e’

Assumes that h is a handle to a file opened in write or
read-write mode.

◮ Copy the current character to the next position.
do

c <- hGetChar h

hPutChar h c

Assumes that h is a handle opened in read-write mode.



Seek and Tell

◮ Write at the word ”The” at the beginning of the file.
hSeek h AbsoluteSeek 0

hPutChar h ’T’

hPutChar h ’h’

hPutChar h ’e’

Assumes that h is a handle to a file opened in write or
read-write mode.

◮ Copy the current character to the next position.
do

c <- hGetChar h

hPutChar h c

Assumes that h is a handle opened in read-write mode.
◮ Copy the current character to the end of the file.



Seek and Tell

◮ Write at the word ”The” at the beginning of the file.
hSeek h AbsoluteSeek 0

hPutChar h ’T’

hPutChar h ’h’

hPutChar h ’e’

Assumes that h is a handle to a file opened in write or
read-write mode.

◮ Copy the current character to the next position.
do

c <- hGetChar h

hPutChar h c

Assumes that h is a handle opened in read-write mode.
◮ Copy the current character to the end of the file.

do

c <- hGetChar h

hSeek h SeekFromEnd 0

hPutChar h c



Files and File I/O

◮ Files exist across different runs of a program.

Any data that needs to be stored across runs has to be in files.



Files and File I/O

◮ Files exist across different runs of a program.

Any data that needs to be stored across runs has to be in files.

◮ Files allow different programs to exchange information.

One program may write its output to a file from which
another reads.



Files and File I/O

◮ Files exist across different runs of a program.

Any data that needs to be stored across runs has to be in files.

◮ Files allow different programs to exchange information.

One program may write its output to a file from which
another reads.

◮ Files reside on the disk and can typically store much more
data than in memory.

Large databases are manipulated by programs by loading just
parts into the memory.



Files and File I/O

◮ Files exist across different runs of a program.

Any data that needs to be stored across runs has to be in files.

◮ Files allow different programs to exchange information.

One program may write its output to a file from which
another reads.

◮ Files reside on the disk and can typically store much more
data than in memory.

Large databases are manipulated by programs by loading just
parts into the memory.

◮ Files can also be used to exchange data between programs
running in different machines.



Files: Examples

◮ A simple Music Library.
◮ Song
◮ Artist
◮ Album
◮ the number of times listed to.



Files: Examples

◮ A simple Music Library.
◮ Song
◮ Artist
◮ Album
◮ the number of times listed to.

◮ Each item occupies four lines.



Files: Examples

◮ A simple Music Library.
◮ Song
◮ Artist
◮ Album
◮ the number of times listed to.

◮ Each item occupies four lines.

◮ Entries are separated by a blank line.



Files: Examples

◮ A simple Music Library.
◮ Song
◮ Artist
◮ Album
◮ the number of times listed to.

◮ Each item occupies four lines.

◮ Entries are separated by a blank line.

◮ Find the song that I have listened to most?



Files: Examples

◮ A simple Music Library.
◮ Song
◮ Artist
◮ Album
◮ the number of times listed to.

◮ Each item occupies four lines.

◮ Entries are separated by a blank line.

◮ Find the song that I have listened to most?

◮ List the songs in the order of the number of times listened to?



Music Library ...

Body and Soul

Django Reinhardt

Djangology Vol 5

4

Entertainer

Scott Joplin

A-Z Encyclopedia of Jazz

10

Romanian Folk Dances for the Piano

Bela Bartok

Concertos for the piano and orchestra Vol 2/3

4

Raag Ek Nishad Ka Behagda

Mallikarjun Mansur

12

...



Load and process

◮ Each entry is a four tuple

type Entry = (String,String,String,Int)

deriving (Eq,Ord,Show)

main = do

hd <- openFile "MusicData" ReadMode

el <- fillEList hd []

--- Process the list el using pure functions

--- Write down el at the end.



Load and process

◮ Each entry is a four tuple

type Entry = (String,String,String,Int)

deriving (Eq,Ord,Show)

main = do

hd <- openFile "MusicData" ReadMode

el <- fillEList hd []

--- Process the list el using pure functions

--- Write down el at the end.

◮ Construct a list of entries from the file.

fillEList :: Handle -> [Entry] -> IO [Entry]

◮ Find the song most listened to.

most :: [Entry] -> Entry

◮ Increment its count by 1 (listen to it).

incCount :: Entry -> Entry

...



fillElist...

fillEList h l =

do

over <- hIsEOF h

if (over)

then

return l

else

do

song <- hGetLine h

artist <- hGetLine h

album <- hGetLine h

times <-

(hGetLine h >>= (read::Int))

hGetLine h

nl <- fillEList h l

return ((song,artist,album,times):nl)
◮ Populates a list with the contents of the file.



Records in Haskell : An aside

◮ Tuples allow grouping if values.

type Entry = (String,String,String,Int)



Records in Haskell : An aside

◮ Tuples allow grouping if values.

type Entry = (String,String,String,Int)

◮ We may also use user defined datatypes.

data Entry = Entry String String String Int



Records in Haskell : An aside

◮ Tuples allow grouping if values.

type Entry = (String,String,String,Int)

◮ We may also use user defined datatypes.

data Entry = Entry String String String Int

◮ In both cases we will need extractor functions to access the
components:

song :: Entry -> String

artist :: Entry -> String

album :: Entry -> String

times :: Entry -> Int



Records in Haskell : An aside

◮ Tuples allow grouping if values.

type Entry = (String,String,String,Int)

◮ We may also use user defined datatypes.

data Entry = Entry String String String Int

◮ In both cases we will need extractor functions to access the
components:

song :: Entry -> String

artist :: Entry -> String

album :: Entry -> String

times :: Entry -> Int

◮ Haskell allows you define extractor functions simultaneously
with the definition of the data type.



Record Syntax

◮ We can define Entry as follows:

data Entry = Entry {

song :: String,

artist :: String,

album :: String,

times :: Int

} deriving (Ord, Eq, Show)



Record Syntax

◮ We can define Entry as follows:

data Entry = Entry {

song :: String,

artist :: String,

album :: String,

times :: Int

} deriving (Ord, Eq, Show)

◮ This has the effect of



Record Syntax

◮ We can define Entry as follows:

data Entry = Entry {

song :: String,

artist :: String,

album :: String,

times :: Int

} deriving (Ord, Eq, Show)

◮ This has the effect of
◮ Defining a datatype

data Entry = Entry String String String Int



Record Syntax

◮ We can define Entry as follows:

data Entry = Entry {

song :: String,

artist :: String,

album :: String,

times :: Int

} deriving (Ord, Eq, Show)

◮ This has the effect of
◮ Defining a datatype

data Entry = Entry String String String Int
◮ providing accessor functions song, artist, album andtimes



Record Syntax

◮ We can define Entry as follows:

data Entry = Entry {

song :: String,

artist :: String,

album :: String,

times :: Int

} deriving (Ord, Eq, Show)

◮ This has the effect of
◮ Defining a datatype

data Entry = Entry String String String Int
◮ providing accessor functions song, artist, album andtimes

◮ Values can be created as

entry = Entry { song = "Tunji", artist = "John Coltrane",

album = "In a Soulful Mood",

times = 3 }



Record ...

data Entry = Entry {

song :: String,

artist :: String,

album :: String,

times :: Int

entry = Entry { song = "Tunji", artist = "John Coltrane",

album = "In a Soulful Mood",

times = 3 }



Record ...

data Entry = Entry {

song :: String,

artist :: String,

album :: String,

times :: Int

entry = Entry { song = "Tunji", artist = "John Coltrane",

album = "In a Soulful Mood",

times = 3 }

◮ As expected we have

song entry = "Tunji"

times entry = 3

...



Record ...

◮ The order of entries is unimportant if we use the record
notation.



Record ...

◮ The order of entries is unimportant if we use the record
notation.

entry = Entry { song = "Tunji",

album = "In a Soulful Mood",

artist = "John Coltrane",

times = 3 }

has the same effect.



Record ...

◮ The order of entries is unimportant if we use the record
notation.

entry = Entry { song = "Tunji",

album = "In a Soulful Mood",

artist = "John Coltrane",

times = 3 }

has the same effect.

◮ We are also free to the datatype version.

entry = Entry "Tunji" "In a Soulful Mood"

"John Coltrane" 3



Back to the Music Album

◮ Our current scheme of



Back to the Music Album

◮ Our current scheme of
◮ Load the data from the file to a list



Back to the Music Album

◮ Our current scheme of
◮ Load the data from the file to a list
◮ work with the list



Back to the Music Album

◮ Our current scheme of
◮ Load the data from the file to a list
◮ work with the list
◮ Write the list to the file



Back to the Music Album

◮ Our current scheme of
◮ Load the data from the file to a list
◮ work with the list
◮ Write the list to the file

has some flaws.



Back to the Music Album

◮ Our current scheme of
◮ Load the data from the file to a list
◮ work with the list
◮ Write the list to the file

has some flaws.

◮ What if we change only one or two entries?



Back to the Music Album

◮ Our current scheme of
◮ Load the data from the file to a list
◮ work with the list
◮ Write the list to the file

has some flaws.

◮ What if we change only one or two entries?

We still have to write the entire file.



Back to the Music Album

◮ Our current scheme of
◮ Load the data from the file to a list
◮ work with the list
◮ Write the list to the file

has some flaws.

◮ What if we change only one or two entries?

We still have to write the entire file.

◮ Can we selectively write only the changed entries?



Selective Writing



Selective Writing

◮ Seek to the correct position in the file and write.



Selective Writing

◮ Seek to the correct position in the file and write.

◮ How do we know the correct position in the file?



Selective Writing

◮ Seek to the correct position in the file and write.

◮ How do we know the correct position in the file?

◮ Modify fillELlist to also record for each entry the position
where it begins in the file.

type Entry = (String,String,String,Int,Int)

...

fillEllist

...

do

pos = hTell h

song = hGetLine h

...



Selective Writing

◮ Seek to the correct position in the file and write.

◮ How do we know the correct position in the file?

◮ Modify fillELlist to also record for each entry the position
where it begins in the file.

type Entry = (String,String,String,Int,Int)

...

fillEllist

...

do

pos = hTell h

song = hGetLine h

...

◮ To write an entry, seek to its position and then write.



A Flaw in our idea

◮ What happens when the count goes from 9 to 10.



A Flaw in our idea

◮ What happens when the count goes from 9 to 10.

◮ We overwrite the first character in the next entry!



A Flaw in our idea

◮ What happens when the count goes from 9 to 10.

◮ We overwrite the first character in the next entry!

◮ Either write everything from there on.



A Flaw in our idea

◮ What happens when the count goes from 9 to 10.

◮ We overwrite the first character in the next entry!

◮ Either write everything from there on.

◮ or assuming fixed length changable fields.



A Flaw in our idea

◮ What happens when the count goes from 9 to 10.

◮ We overwrite the first character in the next entry!

◮ Either write everything from there on.

◮ or assuming fixed length changable fields.

Allocate 4 characters for times always.


