
Introduction to Programming: Lecture 14

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

01 October 2013

http://www.cmi.ac.in/~kumar


Arrays

I Lists store a collection of elements.

I Accessing the first element of a list takes just one step.

I Accessing the i th element of a list takes i steps.

a :: [Int]

...

b = a!!i

...

I It is useful to be able to access every element in equal time
(constant?)

Array give one way to do this.

The module Data.Array has to be imported to use arrays.



Arrays

I Lists store a collection of elements.

I Accessing the first element of a list takes just one step.

I Accessing the i th element of a list takes i steps.

a :: [Int]

...

b = a!!i

...

I It is useful to be able to access every element in equal time
(constant?)

Array give one way to do this.

The module Data.Array has to be imported to use arrays.



Arrays

I Lists store a collection of elements.

I Accessing the first element of a list takes just one step.

I Accessing the i th element of a list takes i steps.

a :: [Int]

...

b = a!!i

...

I It is useful to be able to access every element in equal time
(constant?)

Array give one way to do this.

The module Data.Array has to be imported to use arrays.



Arrays

I Lists store a collection of elements.

I Accessing the first element of a list takes just one step.

I Accessing the i th element of a list takes i steps.

a :: [Int]

...

b = a!!i

...

I It is useful to be able to access every element in equal time
(constant?)

Array give one way to do this.

The module Data.Array has to be imported to use arrays.



Arrays

I Lists store a collection of elements.

I Accessing the first element of a list takes just one step.

I Accessing the i th element of a list takes i steps.

a :: [Int]

...

b = a!!i

...

I It is useful to be able to access every element in equal time
(constant?)

Array give one way to do this.

The module Data.Array has to be imported to use arrays.



Arrays

I An Example

myarray :: Array Int String

I This definition says that
I The indices of the array come from Int and
I The values come from String

I Here is one way to create an array.

myarray = listArray (0,2) ["one","two","three"]

I The resulting array is

Index 0 1 2

Value "one" "two" "three"

I listArray takes a range of values from the index type and
list of values to create an array.

I Accessing an element is done using the ! operator:

myarray!1 = "two"



Arrays

I An Example

myarray :: Array Int String

I This definition says that
I The indices of the array come from Int and
I The values come from String

I Here is one way to create an array.

myarray = listArray (0,2) ["one","two","three"]

I The resulting array is

Index 0 1 2

Value "one" "two" "three"

I listArray takes a range of values from the index type and
list of values to create an array.

I Accessing an element is done using the ! operator:

myarray!1 = "two"



Arrays

I An Example

myarray :: Array Int String

I This definition says that
I The indices of the array come from Int and
I The values come from String

I Here is one way to create an array.

myarray = listArray (0,2) ["one","two","three"]

I The resulting array is

Index 0 1 2

Value "one" "two" "three"

I listArray takes a range of values from the index type and
list of values to create an array.

I Accessing an element is done using the ! operator:

myarray!1 = "two"



Arrays

I An Example

myarray :: Array Int String

I This definition says that
I The indices of the array come from Int and
I The values come from String

I Here is one way to create an array.

myarray = listArray (0,2) ["one","two","three"]

I The resulting array is

Index 0 1 2

Value "one" "two" "three"

I listArray takes a range of values from the index type and
list of values to create an array.

I Accessing an element is done using the ! operator:

myarray!1 = "two"



Arrays

I An Example

myarray :: Array Int String

I This definition says that
I The indices of the array come from Int and
I The values come from String

I Here is one way to create an array.

myarray = listArray (0,2) ["one","two","three"]

I The resulting array is

Index 0 1 2

Value "one" "two" "three"

I listArray takes a range of values from the index type and
list of values to create an array.

I Accessing an element is done using the ! operator:

myarray!1 = "two"



Arrays

I An Example

myarray :: Array Int String

I This definition says that
I The indices of the array come from Int and
I The values come from String

I Here is one way to create an array.

myarray = listArray (0,2) ["one","two","three"]

I The resulting array is

Index 0 1 2

Value "one" "two" "three"

I listArray takes a range of values from the index type and
list of values to create an array.

I Accessing an element is done using the ! operator:

myarray!1 = "two"



Arrays ...

I Array a b is a valid type when a belongs to Ix

I Ix is a collection of types that are in Ord and further can be
enumerated

I If Ix a then if x,y are of type a and x <= y then the range of
values between x and y is defined and finite

I Int, Char are in Ix but Float is not.

I Example:

x = listArray (’e’,’g’) ["one","two","three"]

The resulting array is

Index ’e’ ’f’ ’g’

Value "one" "two" "three"



Arrays ...

I Array a b is a valid type when a belongs to Ix

I Ix is a collection of types that are in Ord and further can be
enumerated

I If Ix a then if x,y are of type a and x <= y then the range of
values between x and y is defined and finite

I Int, Char are in Ix but Float is not.

I Example:

x = listArray (’e’,’g’) ["one","two","three"]

The resulting array is

Index ’e’ ’f’ ’g’

Value "one" "two" "three"



Arrays ...

I Array a b is a valid type when a belongs to Ix

I Ix is a collection of types that are in Ord and further can be
enumerated

I If Ix a then if x,y are of type a and x <= y then the range of
values between x and y is defined and finite

I Int, Char are in Ix but Float is not.

I Example:

x = listArray (’e’,’g’) ["one","two","three"]

The resulting array is

Index ’e’ ’f’ ’g’

Value "one" "two" "three"



Arrays ...

I Array a b is a valid type when a belongs to Ix

I Ix is a collection of types that are in Ord and further can be
enumerated

I If Ix a then if x,y are of type a and x <= y then the range of
values between x and y is defined and finite

I Int, Char are in Ix but Float is not.

I Example:

x = listArray (’e’,’g’) ["one","two","three"]

The resulting array is

Index ’e’ ’f’ ’g’

Value "one" "two" "three"



Arrays ...

I Array a b is a valid type when a belongs to Ix

I Ix is a collection of types that are in Ord and further can be
enumerated

I If Ix a then if x,y are of type a and x <= y then the range of
values between x and y is defined and finite

I Int, Char are in Ix but Float is not.

I Example:

x = listArray (’e’,’g’) ["one","two","three"]

The resulting array is

Index ’e’ ’f’ ’g’

Value "one" "two" "three"



More about indices

I Any type a that belongs to the typeclass Ix must provide the
following functions:

range :: (a,a) -> [a]

index :: (a,a) a -> Int

inRange :: (a,a) -> a -> Bool

I range returns the list of elements in the given interval.

range (0,5) = [0,1,2,3,4,5]

I index returns the position of a given value in the range.

index (0,5) 2 = 2

I inRange checks of the value lies within the range.

inRange (0,5) 6 = False



More about indices

I Any type a that belongs to the typeclass Ix must provide the
following functions:

range :: (a,a) -> [a]

index :: (a,a) a -> Int

inRange :: (a,a) -> a -> Bool

I range returns the list of elements in the given interval.

range (0,5) = [0,1,2,3,4,5]

I index returns the position of a given value in the range.

index (0,5) 2 = 2

I inRange checks of the value lies within the range.

inRange (0,5) 6 = False



More about indices

I Any type a that belongs to the typeclass Ix must provide the
following functions:

range :: (a,a) -> [a]

index :: (a,a) a -> Int

inRange :: (a,a) -> a -> Bool

I range returns the list of elements in the given interval.

range (0,5) = [0,1,2,3,4,5]

I index returns the position of a given value in the range.

index (0,5) 2 = 2

I inRange checks of the value lies within the range.

inRange (0,5) 6 = False



More about indices

I Any type a that belongs to the typeclass Ix must provide the
following functions:

range :: (a,a) -> [a]

index :: (a,a) a -> Int

inRange :: (a,a) -> a -> Bool

I range returns the list of elements in the given interval.

range (0,5) = [0,1,2,3,4,5]

I index returns the position of a given value in the range.

index (0,5) 2 = 2

I inRange checks of the value lies within the range.

inRange (0,5) 6 = False



Creating Arrays

I We may also create an array by supplying the index-value
pairs (associative list) as a list.

myarray :: Array Int String

myarray = array (0,2)

[(1,"two"), (0,"one"),(2,"three")]

has the same effect as the earlier definition

listArray (0,2) ["one", "two", "three"]

I The array function allows you to supply the associative list in
any order.

I We may also omit some elements.

array (0,2) [(0,5),(2,7)]

I Both the functions array and listArray take time
proportional to the range of the array. (??)



Creating Arrays

I We may also create an array by supplying the index-value
pairs (associative list) as a list.

myarray :: Array Int String

myarray = array (0,2)

[(1,"two"), (0,"one"),(2,"three")]

has the same effect as the earlier definition

listArray (0,2) ["one", "two", "three"]

I The array function allows you to supply the associative list in
any order.

I We may also omit some elements.

array (0,2) [(0,5),(2,7)]

I Both the functions array and listArray take time
proportional to the range of the array. (??)



Creating Arrays

I We may also create an array by supplying the index-value
pairs (associative list) as a list.

myarray :: Array Int String

myarray = array (0,2)

[(1,"two"), (0,"one"),(2,"three")]

has the same effect as the earlier definition

listArray (0,2) ["one", "two", "three"]

I The array function allows you to supply the associative list in
any order.

I We may also omit some elements.

array (0,2) [(0,5),(2,7)]

I Both the functions array and listArray take time
proportional to the range of the array. (??)



Creating Arrays

I We may also create an array by supplying the index-value
pairs (associative list) as a list.

myarray :: Array Int String

myarray = array (0,2)

[(1,"two"), (0,"one"),(2,"three")]

has the same effect as the earlier definition

listArray (0,2) ["one", "two", "three"]

I The array function allows you to supply the associative list in
any order.

I We may also omit some elements.

array (0,2) [(0,5),(2,7)]

I Both the functions array and listArray take time
proportional to the range of the array. (??)



Creating Arrays

I We may also create an array by supplying the index-value
pairs (associative list) as a list.

myarray :: Array Int String

myarray = array (0,2)

[(1,"two"), (0,"one"),(2,"three")]

has the same effect as the earlier definition

listArray (0,2) ["one", "two", "three"]

I The array function allows you to supply the associative list in
any order.

I We may also omit some elements.

array (0,2) [(0,5),(2,7)]

I Both the functions array and listArray take time
proportional to the range of the array. (??)



Creating Arrays

I We may also create an array by supplying the index-value
pairs (associative list) as a list.

myarray :: Array Int String

myarray = array (0,2)

[(1,"two"), (0,"one"),(2,"three")]

has the same effect as the earlier definition

listArray (0,2) ["one", "two", "three"]

I The array function allows you to supply the associative list in
any order.

I We may also omit some elements.

array (0,2) [(0,5),(2,7)]

I Both the functions array and listArray take time
proportional to the range of the array.

(??)



Creating Arrays

I We may also create an array by supplying the index-value
pairs (associative list) as a list.

myarray :: Array Int String

myarray = array (0,2)

[(1,"two"), (0,"one"),(2,"three")]

has the same effect as the earlier definition

listArray (0,2) ["one", "two", "three"]

I The array function allows you to supply the associative list in
any order.

I We may also omit some elements.

array (0,2) [(0,5),(2,7)]

I Both the functions array and listArray take time
proportional to the range of the array. (??)



Searching in a sorted array

Searching for 77

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 99



Searching in a sorted array

Searching for 77

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 9955

⇑



Searching in a sorted array

Searching for 77

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 9983

⇑



Searching in a sorted array

Searching for 77

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 9970

⇑



Searching in a sorted array

Searching for 77

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 9977

⇑



Searching in a sorted array

Searching for 24

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 99



Searching in a sorted array

Searching for 24

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 9955

⇑



Searching in a sorted array

Searching for 24

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 9922

⇑



Searching in a sorted array

Searching for 24

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 9933

⇑



Searching in a sorted array

Searching for 24

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 9927

⇑



Searching in a sorted array

Searching for 24

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 99

⇑

I Each step halves the interval to search



Searching in a sorted array

Searching for 24

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 99

⇑

I Each step halves the interval to search

I Keep halving till we reach an interval of size 1



Searching in a sorted array

Searching for 24

5 13 16 22 27 33 41 55 61 70 77 83 85 91 93 99

⇑

I Each step halves the interval to search

I Keep halving till we reach an interval of size 1

I Searching a sorted list of size N takes log2N steps



Binary Searching in Haskell

I The following function checks if the value v appears between
positions b and e in the array ar

import Data.Array

bAux :: Ord a => (Int,Int) -> a ->

Array Int a -> Bool

bAux (b,e) v ar

| b > e = False

| (ar!m) == v = True

| (v < ar!m) = bAux (b,m-1) v ar

| otherwise = bAux (m+1,e) v ar

where

m = div (b+e) 2

I Searching for a value v in a sorted array ar

bsearch :: Ord a => a -> Array Int a -> Bool

bsearch v ar = bAux (bounds ar) v ar



Binary Searching in Haskell

I The following function checks if the value v appears between
positions b and e in the array ar

import Data.Array

bAux :: Ord a => (Int,Int) -> a ->

Array Int a -> Bool

bAux (b,e) v ar

| b > e = False

| (ar!m) == v = True

| (v < ar!m) = bAux (b,m-1) v ar

| otherwise = bAux (m+1,e) v ar

where

m = div (b+e) 2

I Searching for a value v in a sorted array ar

bsearch :: Ord a => a -> Array Int a -> Bool

bsearch v ar = bAux (bounds ar) v ar



Arrays to Lists and Back

I elems function converts an array into a list of values.

I To convert a list into an Int indexed array, we can use

listToArray ls = listArray (0,l-1) ls

where

l = length ls



Arrays to Lists and Back

I elems function converts an array into a list of values.

I To convert a list into an Int indexed array, we can use

listToArray ls = listArray (0,l-1) ls

where

l = length ls



Searching in an unsorted list

I Given a unsorted list of values on which a number of search
queries need to be answered

I Sort the list using say mergesort ...

I Transfer the list into array.

I Use bsearch to carry out the searches efficiently.



Searching in an unsorted list

I Given a unsorted list of values on which a number of search
queries need to be answered

I Sort the list

using say mergesort ...

I Transfer the list into array.

I Use bsearch to carry out the searches efficiently.



Searching in an unsorted list

I Given a unsorted list of values on which a number of search
queries need to be answered

I Sort the list using say mergesort ...

I Transfer the list into array.

I Use bsearch to carry out the searches efficiently.



Searching in an unsorted list

I Given a unsorted list of values on which a number of search
queries need to be answered

I Sort the list using say mergesort ...

I Transfer the list into array.

I Use bsearch to carry out the searches efficiently.



Searching in an unsorted list

I Given a unsorted list of values on which a number of search
queries need to be answered

I Sort the list using say mergesort ...

I Transfer the list into array.

I Use bsearch to carry out the searches efficiently.



Functions on Arrays

I The function bounds returns the end-points of the range of
indices used by the array.

bounds myarray = (0,2)

I The function indices returns the range defined by its bounds.

indices = range.bounds

I The function elems returns the elements of the array.

elems ar = [ar!i | i <- indices ar]

elems is undefined if the array value is undefined for any of
the indices.

I assocs returns the associative list describing the array.

assocs myarray =

[(0,"one"),(1,"two"),(2,"three")]



Functions on Arrays

I The function bounds returns the end-points of the range of
indices used by the array.

bounds myarray = (0,2)

I The function indices returns the range defined by its bounds.

indices = range.bounds

I The function elems returns the elements of the array.

elems ar = [ar!i | i <- indices ar]

elems is undefined if the array value is undefined for any of
the indices.

I assocs returns the associative list describing the array.

assocs myarray =

[(0,"one"),(1,"two"),(2,"three")]



Functions on Arrays

I The function bounds returns the end-points of the range of
indices used by the array.

bounds myarray = (0,2)

I The function indices returns the range defined by its bounds.

indices = range.bounds

I The function elems returns the elements of the array.

elems ar = [ar!i | i <- indices ar]

elems is undefined if the array value is undefined for any of
the indices.

I assocs returns the associative list describing the array.

assocs myarray =

[(0,"one"),(1,"two"),(2,"three")]



Functions on Arrays

I The function bounds returns the end-points of the range of
indices used by the array.

bounds myarray = (0,2)

I The function indices returns the range defined by its bounds.

indices = range.bounds

I The function elems returns the elements of the array.

elems ar = [ar!i | i <- indices ar]

elems is undefined if the array value is undefined for any of
the indices.

I assocs returns the associative list describing the array.

assocs myarray =

[(0,"one"),(1,"two"),(2,"three")]



Functions on Arrays

I The function bounds returns the end-points of the range of
indices used by the array.

bounds myarray = (0,2)

I The function indices returns the range defined by its bounds.

indices = range.bounds

I The function elems returns the elements of the array.

elems ar = [ar!i | i <- indices ar]

elems is undefined if the array value is undefined for any of
the indices.

I assocs returns the associative list describing the array.

assocs myarray =

[(0,"one"),(1,"two"),(2,"three")]



”Changing” the values in an array

I Arrays, like all other values in Haskell, are immutable.
Arrays are essentially functions!

I We can create an array from another by updating some of the
entries.

This is done using the // operator and by supplying an
associative list of changes

(listArray (0,2) [2,3,4])//([(1,7),(2,8)]

= listArray (0,2) [2,7,8]

I However, note that updating an array using the // operator is
an expensive operation with cost proportional to the size of
the array.

I Efficiently updatable arrays can be created in Haskell, but that
needs additional concepts.



”Changing” the values in an array

I Arrays, like all other values in Haskell, are immutable.
Arrays are essentially functions!

I We can create an array from another by updating some of the
entries.

This is done using the // operator and by supplying an
associative list of changes

(listArray (0,2) [2,3,4])//([(1,7),(2,8)]

= listArray (0,2) [2,7,8]

I However, note that updating an array using the // operator is
an expensive operation with cost proportional to the size of
the array.

I Efficiently updatable arrays can be created in Haskell, but that
needs additional concepts.



”Changing” the values in an array

I Arrays, like all other values in Haskell, are immutable.
Arrays are essentially functions!

I We can create an array from another by updating some of the
entries.

This is done using the // operator and by supplying an
associative list of changes

(listArray (0,2) [2,3,4])//([(1,7),(2,8)]

= listArray (0,2) [2,7,8]

I However, note that updating an array using the // operator is
an expensive operation with cost proportional to the size of
the array.

I Efficiently updatable arrays can be created in Haskell, but that
needs additional concepts.



”Changing” the values in an array

I Arrays, like all other values in Haskell, are immutable.
Arrays are essentially functions!

I We can create an array from another by updating some of the
entries.

This is done using the // operator and by supplying an
associative list of changes

(listArray (0,2) [2,3,4])//([(1,7),(2,8)]

= listArray (0,2) [2,7,8]

I However, note that updating an array using the // operator is
an expensive operation with cost proportional to the size of
the array.

I Efficiently updatable arrays can be created in Haskell, but that
needs additional concepts.



”Changing” the values in an array

I Arrays, like all other values in Haskell, are immutable.
Arrays are essentially functions!

I We can create an array from another by updating some of the
entries.

This is done using the // operator and by supplying an
associative list of changes

(listArray (0,2) [2,3,4])//([(1,7),(2,8)]

= listArray (0,2) [2,7,8]

I However, note that updating an array using the // operator is
an expensive operation with cost proportional to the size of
the array.

I Efficiently updatable arrays can be created in Haskell, but that
needs additional concepts.



”Changing” the values in an array

I Arrays, like all other values in Haskell, are immutable.
Arrays are essentially functions!

I We can create an array from another by updating some of the
entries.

This is done using the // operator and by supplying an
associative list of changes

(listArray (0,2) [2,3,4])//([(1,7),(2,8)]

= listArray (0,2) [2,7,8]

I However, note that updating an array using the // operator is
an expensive operation with cost proportional to the size of
the array.

I Efficiently updatable arrays can be created in Haskell, but that
needs additional concepts.



Another array constructing function

I The accumArray function takes a ”accumulating” function
and an associative list and creates an array.

accumArray (+) 100 (0,2) [(0,1),(1,3),(2,4)]

= listArray (0,2) [101,103,104]

accumArray (+) 100 (0,2) [(0,1),(1,3),(0,4)]

= listArray (0,2) [105,103,100]

I The type of accumArray is

accumArray :: Ix i => (a -> b -> a) -> a ->

-> (i,i) -> [(i,b)] -> Array i a

I Also works in linear time on the length of the associative list
plus the range.



Another array constructing function

I The accumArray function takes a ”accumulating” function
and an associative list and creates an array.

accumArray (+) 100 (0,2) [(0,1),(1,3),(2,4)]

= listArray (0,2) [101,103,104]

accumArray (+) 100 (0,2) [(0,1),(1,3),(0,4)]

= listArray (0,2) [105,103,100]

I The type of accumArray is

accumArray :: Ix i => (a -> b -> a) -> a ->

-> (i,i) -> [(i,b)] -> Array i a

I Also works in linear time on the length of the associative list
plus the range.



Another array constructing function

I The accumArray function takes a ”accumulating” function
and an associative list and creates an array.

accumArray (+) 100 (0,2) [(0,1),(1,3),(2,4)]

= listArray (0,2) [101,103,104]

accumArray (+) 100 (0,2) [(0,1),(1,3),(0,4)]

= listArray (0,2) [105,103,100]

I The type of accumArray is

accumArray :: Ix i => (a -> b -> a) -> a ->

-> (i,i) -> [(i,b)] -> Array i a

I Also works in linear time on the length of the associative list
plus the range.



Another array constructing function

I The accumArray function takes a ”accumulating” function
and an associative list and creates an array.

accumArray (+) 100 (0,2) [(0,1),(1,3),(2,4)]

= listArray (0,2) [101,103,104]

accumArray (+) 100 (0,2) [(0,1),(1,3),(0,4)]

= listArray (0,2) [105,103,100]

I The type of accumArray is

accumArray :: Ix i => (a -> b -> a) -> a ->

-> (i,i) -> [(i,b)] -> Array i a

I Also works in linear time on the length of the associative list
plus the range.



Another array constructing function

I The accumArray function takes a ”accumulating” function
and an associative list and creates an array.

accumArray (+) 100 (0,2) [(0,1),(1,3),(2,4)]

= listArray (0,2) [101,103,104]

accumArray (+) 100 (0,2) [(0,1),(1,3),(0,4)]

= listArray (0,2) [105,103,100]

I The type of accumArray is

accumArray :: Ix i => (a -> b -> a) -> a ->

-> (i,i) -> [(i,b)] -> Array i a

I Also works in linear time on the length of the associative list
plus the range.



An old example: minout

I minout :: [Int] -> Int

minout l is the minimum nonnegative number not in l

assuming that all elements in l are nonnegative and distinct.

I minout [3,1,2] = 0
I minout [1,5,3,0,2] = 4
I minout [11,5,3,0] = 1

I How do we compute minout?

I The linear time solution via lists involved a rather clever divide
and conquer algorithm.

I With arrays the solution is simpler



An old example: minout

I minout :: [Int] -> Int

minout l is the minimum nonnegative number not in l

assuming that all elements in l are nonnegative and distinct.

I minout [3,1,2] = 0
I minout [1,5,3,0,2] = 4
I minout [11,5,3,0] = 1

I How do we compute minout?

I The linear time solution via lists involved a rather clever divide
and conquer algorithm.

I With arrays the solution is simpler



An old example: minout

I minout :: [Int] -> Int

minout l is the minimum nonnegative number not in l

assuming that all elements in l are nonnegative and distinct.

I minout [3,1,2] = 0
I minout [1,5,3,0,2] = 4
I minout [11,5,3,0] = 1

I How do we compute minout?

I The linear time solution via lists involved a rather clever divide
and conquer algorithm.

I With arrays the solution is simpler



minout via arrays

I Our strategy is the following. Let m be the length of the given
list ls

I Initialize an array with indices 0, .., m with 0.

I Create an associative list
[(i,1) | i <- ls, 0 <= i, i <= m]

I Accumulate values from this associative list using the function
f x y = y

I The index of the first entry in the array with 0 is the answer.



minout via arrays

I Our strategy is the following. Let m be the length of the given
list ls

I Initialize an array with indices 0, .., m with 0.

I Create an associative list
[(i,1) | i <- ls, 0 <= i, i <= m]

I Accumulate values from this associative list using the function
f x y = y

I The index of the first entry in the array with 0 is the answer.



minout via arrays

I Our strategy is the following. Let m be the length of the given
list ls

I Initialize an array with indices 0, .., m with 0.

I Create an associative list
[(i,1) | i <- ls, 0 <= i, i <= m]

I Accumulate values from this associative list using the function
f x y = y

I The index of the first entry in the array with 0 is the answer.



minout via arrays

I Our strategy is the following. Let m be the length of the given
list ls

I Initialize an array with indices 0, .., m with 0.

I Create an associative list
[(i,1) | i <- ls, 0 <= i, i <= m]

I Accumulate values from this associative list using the function
f x y = y

I The index of the first entry in the array with 0 is the answer.



minout via arrays

I Our strategy is the following. Let m be the length of the given
list ls

I Initialize an array with indices 0, .., m with 0.

I Create an associative list
[(i,1) | i <- ls, 0 <= i, i <= m]

I Accumulate values from this associative list using the function
f x y = y

I The index of the first entry in the array with 0 is the answer.



minout via arrays ...

import Data.Array

minout ls = firstZero 0

where

m = length ls

f x y = y

myArray = accumArray f 0 (0,m)

[(i,1) | i <- ls, 0 <= i, i <= m]

firstZero :: Int -> Int

firstZero i

| (myArray!i == 0) = i

| otherwise = firstZero (i+1)



Two dimensional arrays

I The definition of an array makes no reference to a dimension.

I So, two or k-dimensional arrays are essentially same, with just
a different sent of indices.

I Here is way to generate an n × n identity matrix.

idMat n = accumArray f 0 ((0,0),(n-1,n-1))

[((i,i),1) | i <- [0..(n-1)]]

where

f x y = y



Two dimensional arrays

I The definition of an array makes no reference to a dimension.

I So, two or k-dimensional arrays are essentially same, with just
a different sent of indices.

I Here is way to generate an n × n identity matrix.

idMat n = accumArray f 0 ((0,0),(n-1,n-1))

[((i,i),1) | i <- [0..(n-1)]]

where

f x y = y



Two dimensional arrays

I The definition of an array makes no reference to a dimension.

I So, two or k-dimensional arrays are essentially same, with just
a different sent of indices.

I Here is way to generate an n × n identity matrix.

idMat n = accumArray f 0 ((0,0),(n-1,n-1))

[((i,i),1) | i <- [0..(n-1)]]

where

f x y = y


