
Introduction to Programming: Lecture 8

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

03 September 2013

http://www.cmi.ac.in/~kumar

Testing if a number is prime

I Check if a given number n is a prime.

I Naive algorithm:

prime n = and (map f [1..(div n 2)])

where

f i = ((n mod i) /= 0)

I This function takes O(n) to decide if n is a prime.

Is this an efficient algorithm?

I Is it efficient to take 264 steps to decide if a 64 bit number is
prime?

I The size of the input is the number of bits required to write it
down.

The above algorithm is takes 2n steps to decide if a number of
size n is prime.

Testing if a number is prime

I Check if a given number n is a prime.

I Naive algorithm:

prime n = and (map f [1..(div n 2)])

where

f i = ((n mod i) /= 0)

I This function takes O(n) to decide if n is a prime.

Is this an efficient algorithm?

I Is it efficient to take 264 steps to decide if a 64 bit number is
prime?

I The size of the input is the number of bits required to write it
down.

The above algorithm is takes 2n steps to decide if a number of
size n is prime.

Testing if a number is prime

I Check if a given number n is a prime.

I Naive algorithm:

prime n = and (map f [1..(div n 2)])

where

f i = ((n mod i) /= 0)

I This function takes O(n) to decide if n is a prime.

Is this an efficient algorithm?

I Is it efficient to take 264 steps to decide if a 64 bit number is
prime?

I The size of the input is the number of bits required to write it
down.

The above algorithm is takes 2n steps to decide if a number of
size n is prime.

Testing if a number is prime

I Check if a given number n is a prime.

I Naive algorithm:

prime n = and (map f [1..(div n 2)])

where

f i = ((n mod i) /= 0)

I This function takes O(n) to decide if n is a prime.

Is this an efficient algorithm?

I Is it efficient to take 264 steps to decide if a 64 bit number is
prime?

I The size of the input is the number of bits required to write it
down.

The above algorithm is takes 2n steps to decide if a number of
size n is prime.

Testing if a number is prime

I Check if a given number n is a prime.

I Naive algorithm:

prime n = and (map f [1..(div n 2)])

where

f i = ((n mod i) /= 0)

I This function takes O(n) to decide if n is a prime.

Is this an efficient algorithm?

I Is it efficient to take 264 steps to decide if a 64 bit number is
prime?

I The size of the input is the number of bits required to write it
down.

The above algorithm is takes 2n steps to decide if a number of
size n is prime.

Lazy Evaluation

I Any Haskell expression is of the form f e where
I f is the outermost function
I e is the expression to which it is applied.

I Consider sum (2:map (+1) [1,2,3])

f = sum

e = 2:map (+1) [1,2,3]

I When f is a simple function name and not an expression,
Haskell reduces f e using the definition of f

sum (2:map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I The argument is not evaluated if the function definition does
not force it to be evaluted.

sum (2: map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I Reduce the argument only if necessary.

Lazy Evaluation

I Any Haskell expression is of the form f e where
I f is the outermost function
I e is the expression to which it is applied.

I Consider sum (2:map (+1) [1,2,3])

f = sum

e = 2:map (+1) [1,2,3]

I When f is a simple function name and not an expression,
Haskell reduces f e using the definition of f

sum (2:map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I The argument is not evaluated if the function definition does
not force it to be evaluted.

sum (2: map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I Reduce the argument only if necessary.

Lazy Evaluation

I Any Haskell expression is of the form f e where
I f is the outermost function
I e is the expression to which it is applied.

I Consider sum (2:map (+1) [1,2,3])

f = sum

e = 2:map (+1) [1,2,3]

I When f is a simple function name and not an expression,
Haskell reduces f e using the definition of f

sum (2:map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I The argument is not evaluated if the function definition does
not force it to be evaluted.

sum (2: map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I Reduce the argument only if necessary.

Lazy Evaluation

I Any Haskell expression is of the form f e where
I f is the outermost function
I e is the expression to which it is applied.

I Consider sum (2:map (+1) [1,2,3])

f = sum

e = 2:map (+1) [1,2,3]

I When f is a simple function name and not an expression,
Haskell reduces f e using the definition of f

sum (2:map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I The argument is not evaluated if the function definition does
not force it to be evaluted.

sum (2: map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I Reduce the argument only if necessary.

Lazy Evaluation

I Any Haskell expression is of the form f e where
I f is the outermost function
I e is the expression to which it is applied.

I Consider sum (2:map (+1) [1,2,3])

f = sum

e = 2:map (+1) [1,2,3]

I When f is a simple function name and not an expression,
Haskell reduces f e using the definition of f

sum (2:map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I The argument is not evaluated if the function definition does
not force it to be evaluted.

sum (2: map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I Reduce the argument only if necessary.

Lazy Evaluation

I Any Haskell expression is of the form f e where
I f is the outermost function
I e is the expression to which it is applied.

I Consider sum (2:map (+1) [1,2,3])

f = sum

e = 2:map (+1) [1,2,3]

I When f is a simple function name and not an expression,
Haskell reduces f e using the definition of f

sum (2:map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I The argument is not evaluated if the function definition does
not force it to be evaluted.

sum (2: map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I Reduce the argument only if necessary.

Lazy Evaluation

I Any Haskell expression is of the form f e where
I f is the outermost function
I e is the expression to which it is applied.

I Consider sum (2:map (+1) [1,2,3])

f = sum

e = 2:map (+1) [1,2,3]

I When f is a simple function name and not an expression,
Haskell reduces f e using the definition of f

sum (2:map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I The argument is not evaluated if the function definition does
not force it to be evaluted.

sum (2: map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I Reduce the argument only if necessary.

Lazy Evaluation

I Any Haskell expression is of the form f e where
I f is the outermost function
I e is the expression to which it is applied.

I Consider sum (2:map (+1) [1,2,3])

f = sum

e = 2:map (+1) [1,2,3]

I When f is a simple function name and not an expression,
Haskell reduces f e using the definition of f

sum (2:map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I The argument is not evaluated if the function definition does
not force it to be evaluted.

sum (2: map (+1) [1,2,3])

; 2 + sum (map (+1) [1,2,3])

I Reduce the argument only if necessary.

Lazy Evaluation ...

I Sometimes the argument has to be evaluated to evaluate the
function definition

sum (map (+1) [1,2,3])

; sum (2: map (+1) [2,3])

; 2 + sum (map (+1) [2,3])

Evaluate only as much of the argument as is necessary.

I What if f is an expression?

For eg. elem (3+7) (map (+1) [8,9])

f = elem (3+7)

e = map (+1) [8,9]

I In what order are they reduced?

I Haskell reduces the function first.

The argument e is reduced only if nothing else is possible

... and the same rule is applied recursively in reducing
subexpressions.

Lazy Evaluation ...

I Sometimes the argument has to be evaluated to evaluate the
function definition

sum (map (+1) [1,2,3])

; sum (2: map (+1) [2,3])

; 2 + sum (map (+1) [2,3])

Evaluate only as much of the argument as is necessary.

I What if f is an expression?

For eg. elem (3+7) (map (+1) [8,9])

f = elem (3+7)

e = map (+1) [8,9]

I In what order are they reduced?

I Haskell reduces the function first.

The argument e is reduced only if nothing else is possible

... and the same rule is applied recursively in reducing
subexpressions.

Lazy Evaluation ...

I Sometimes the argument has to be evaluated to evaluate the
function definition

sum (map (+1) [1,2,3])

; sum (2: map (+1) [2,3])

; 2 + sum (map (+1) [2,3])

Evaluate only as much of the argument as is necessary.

I What if f is an expression?

For eg. elem (3+7) (map (+1) [8,9])

f = elem (3+7)

e = map (+1) [8,9]

I In what order are they reduced?

I Haskell reduces the function first.

The argument e is reduced only if nothing else is possible

... and the same rule is applied recursively in reducing
subexpressions.

Lazy Evaluation ...

I Sometimes the argument has to be evaluated to evaluate the
function definition

sum (map (+1) [1,2,3])

; sum (2: map (+1) [2,3])

; 2 + sum (map (+1) [2,3])

Evaluate only as much of the argument as is necessary.

I What if f is an expression?

For eg. elem (3+7) (map (+1) [8,9])

f = elem (3+7)

e = map (+1) [8,9]

I In what order are they reduced?

I Haskell reduces the function first.

The argument e is reduced only if nothing else is possible

... and the same rule is applied recursively in reducing
subexpressions.

Lazy Evaluation ...

I Sometimes the argument has to be evaluated to evaluate the
function definition

sum (map (+1) [1,2,3])

; sum (2: map (+1) [2,3])

; 2 + sum (map (+1) [2,3])

Evaluate only as much of the argument as is necessary.

I What if f is an expression?

For eg. elem (3+7) (map (+1) [8,9])

f = elem (3+7)

e = map (+1) [8,9]

I In what order are they reduced?

I Haskell reduces the function first.

The argument e is reduced only if nothing else is possible

... and the same rule is applied recursively in reducing
subexpressions.

Lazy Evaluation ...

I Sometimes the argument has to be evaluated to evaluate the
function definition

sum (map (+1) [1,2,3])

; sum (2: map (+1) [2,3])

; 2 + sum (map (+1) [2,3])

Evaluate only as much of the argument as is necessary.

I What if f is an expression?

For eg. elem (3+7) (map (+1) [8,9])

f = elem (3+7)

e = map (+1) [8,9]

I In what order are they reduced?

I Haskell reduces the function first.

The argument e is reduced only if nothing else is possible

... and the same rule is applied recursively in reducing
subexpressions.

Lazy Evaluation ...

I Sometimes the argument has to be evaluated to evaluate the
function definition

sum (map (+1) [1,2,3])

; sum (2: map (+1) [2,3])

; 2 + sum (map (+1) [2,3])

Evaluate only as much of the argument as is necessary.

I What if f is an expression?

For eg. elem (3+7) (map (+1) [8,9])

f = elem (3+7)

e = map (+1) [8,9]

I In what order are they reduced?

I Haskell reduces the function first.

The argument e is reduced only if nothing else is possible

... and the same rule is applied recursively in reducing
subexpressions.

Lazy Evaluation ...

I Sometimes the argument has to be evaluated to evaluate the
function definition

sum (map (+1) [1,2,3])

; sum (2: map (+1) [2,3])

; 2 + sum (map (+1) [2,3])

Evaluate only as much of the argument as is necessary.

I What if f is an expression?

For eg. elem (3+7) (map (+1) [8,9])

f = elem (3+7)

e = map (+1) [8,9]

I In what order are they reduced?

I Haskell reduces the function first.

The argument e is reduced only if nothing else is possible

... and the same rule is applied recursively in reducing
subexpressions.

Lazy Evaluation: examples

I The following program does not generate an error

tail (3/0):[3,5,9]

; [3,5,9]

I Allows us to deal with infinite objects:

take 3 [1,2..] = [1,2,3]

take 3 [1,2..]

; 1:(take 2 [2,3..])

; 1:(2:take 1 [3,4..])

; 1:(2:(3:take 0 [4..]))

; 1:(2:(3:[]))

Lazy Evaluation: examples

I The following program does not generate an error

tail (3/0):[3,5,9]

; [3,5,9]

I Allows us to deal with infinite objects:

take 3 [1,2..] = [1,2,3]

take 3 [1,2..]

; 1:(take 2 [2,3..])

; 1:(2:take 1 [3,4..])

; 1:(2:(3:take 0 [4..]))

; 1:(2:(3:[]))

Lazy Evaluation: examples

I The following program does not generate an error

tail (3/0):[3,5,9]

; [3,5,9]

I Allows us to deal with infinite objects:

take 3 [1,2..] = [1,2,3]

take 3 [1,2..]

; 1:(take 2 [2,3..])

; 1:(2:take 1 [3,4..])

; 1:(2:(3:take 0 [4..]))

; 1:(2:(3:[]))

Lazy Evaluation: examples

I The following program does not generate an error

tail (3/0):[3,5,9]

; [3,5,9]

I Allows us to deal with infinite objects:

take 3 [1,2..] = [1,2,3]

take 3 [1,2..]

; 1:(take 2 [2,3..])

; 1:(2:take 1 [3,4..])

; 1:(2:(3:take 0 [4..]))

; 1:(2:(3:[]))

Lazy Evaluation: examples

I The following program does not generate an error

tail (3/0):[3,5,9]

; [3,5,9]

I Allows us to deal with infinite objects:

take 3 [1,2..] = [1,2,3]

take 3 [1,2..]

; 1:(take 2 [2,3..])

; 1:(2:take 1 [3,4..])

; 1:(2:(3:take 0 [4..]))

; 1:(2:(3:[]))

Lazy Evaluation: examples

I The following program does not generate an error

tail (3/0):[3,5,9]

; [3,5,9]

I Allows us to deal with infinite objects:

take 3 [1,2..] = [1,2,3]

take 3 [1,2..]

; 1:(take 2 [2,3..])

; 1:(2:take 1 [3,4..])

; 1:(2:(3:take 0 [4..]))

; 1:(2:(3:[]))

Lazy Evaluation: examples

I The following program does not generate an error

tail (3/0):[3,5,9]

; [3,5,9]

I Allows us to deal with infinite objects:

take 3 [1,2..] = [1,2,3]

take 3 [1,2..]

; 1:(take 2 [2,3..])

; 1:(2:take 1 [3,4..])

; 1:(2:(3:take 0 [4..]))

; 1:(2:(3:[]))

Type Classes: A brief introduction

I Consider a simple sorting algorithm such as isort

insert x [] = [x]

insert x (y:ys)

| (x < y) = x:(y:ys)

| otherwise = y : insert x ys

isort = foldr insert []
I These functions are not polymorphic, in the sense used so far,

as they use the function < which is not necessarily defined on
all types.

I Do we have to define a sorting function for each type?
I Int
I Char
I (Int,Int)
I ...

I ... particularly when the same definition works for all these
types!

Type Classes: A brief introduction

I Consider a simple sorting algorithm such as isort

insert x [] = [x]

insert x (y:ys)

| (x < y) = x:(y:ys)

| otherwise = y : insert x ys

isort = foldr insert []
I These functions are not polymorphic, in the sense used so far,

as they use the function < which is not necessarily defined on
all types.

I Do we have to define a sorting function for each type?
I Int
I Char
I (Int,Int)
I ...

I ... particularly when the same definition works for all these
types!

Type Classes: A brief introduction

I Consider a simple sorting algorithm such as isort

insert x [] = [x]

insert x (y:ys)

| (x < y) = x:(y:ys)

| otherwise = y : insert x ys

isort = foldr insert []
I These functions are not polymorphic, in the sense used so far,

as they use the function < which is not necessarily defined on
all types.

I Do we have to define a sorting function for each type?
I Int
I Char
I (Int,Int)
I ...

I ... particularly when the same definition works for all these
types!

Type Classes ...

I Ideally, the type of isort should be
“[a] -> [a] provided the type a has < defined on it”

I Haskell’s Type Classes permit us to do precisely this.

A type class is a collection of types.

I We may define the type of isort to be

Ord a => [a] -> [a]

“Ord a =>” should be read as “If the type a belongs to the
type-class Ord then ”

I A type a belongs to the type-class Ord if it has functions
<,>,<=,>=,==,/= (all of type a -> a -> Bool) defined on
it.

Type Classes ...

I Ideally, the type of isort should be
“[a] -> [a] provided the type a has < defined on it”

I Haskell’s Type Classes permit us to do precisely this.

A type class is a collection of types.

I We may define the type of isort to be

Ord a => [a] -> [a]

“Ord a =>” should be read as “If the type a belongs to the
type-class Ord then ”

I A type a belongs to the type-class Ord if it has functions
<,>,<=,>=,==,/= (all of type a -> a -> Bool) defined on
it.

Type Classes ...

I Ideally, the type of isort should be
“[a] -> [a] provided the type a has < defined on it”

I Haskell’s Type Classes permit us to do precisely this.

A type class is a collection of types.

I We may define the type of isort to be

Ord a => [a] -> [a]

“Ord a =>” should be read as “If the type a belongs to the
type-class Ord then ”

I A type a belongs to the type-class Ord if it has functions
<,>,<=,>=,==,/= (all of type a -> a -> Bool) defined on
it.

Type Classes ...

I Ideally, the type of isort should be
“[a] -> [a] provided the type a has < defined on it”

I Haskell’s Type Classes permit us to do precisely this.

A type class is a collection of types.

I We may define the type of isort to be

Ord a => [a] -> [a]

“Ord a =>” should be read as “If the type a belongs to the
type-class Ord then ”

I A type a belongs to the type-class Ord if it has functions
<,>,<=,>=,==,/= (all of type a -> a -> Bool) defined on
it.

A type for sort functions

I Thus we may write

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys)

| (x < y) = x:y:ys

| otherwise = y : insert x ys

isort :: Ord a => [a] -> [a]

isort l = foldr insert [] l

I If you omit the type definition, ghc will infer the type
correctly.

A type for sort functions

I Thus we may write

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys)

| (x < y) = x:y:ys

| otherwise = y : insert x ys

isort :: Ord a => [a] -> [a]

isort l = foldr insert [] l

I If you omit the type definition, ghc will infer the type
correctly.

Type Classes ...

I In Haskell type-classes are identified by a signature: a bunch of
functions that must be defined for membership in the class.

I Ord is defined by the signature <,>,<=,>=,==,/=

I Eq is defined by the signature =,/=

I Show is defined by the signature show.

I All basic types (Int, Float, Char, Bool ...) are
members of all these type-classes.

I All lists and tuples of types that belong to any of these type
classes are also members of these classes.

I Higher-order types do NOT belong to Ord, Eq, Show.

I Other type-classes we have encountered include Num, Frac,

Integral, ...

I We can create our own type-classes and also add types to
type-classes. (As we shall see later.)

Type Classes ...

I In Haskell type-classes are identified by a signature: a bunch of
functions that must be defined for membership in the class.

I Ord is defined by the signature <,>,<=,>=,==,/=

I Eq is defined by the signature =,/=

I Show is defined by the signature show.

I All basic types (Int, Float, Char, Bool ...) are
members of all these type-classes.

I All lists and tuples of types that belong to any of these type
classes are also members of these classes.

I Higher-order types do NOT belong to Ord, Eq, Show.

I Other type-classes we have encountered include Num, Frac,

Integral, ...

I We can create our own type-classes and also add types to
type-classes. (As we shall see later.)

Type Classes ...

I In Haskell type-classes are identified by a signature: a bunch of
functions that must be defined for membership in the class.

I Ord is defined by the signature <,>,<=,>=,==,/=

I Eq is defined by the signature =,/=

I Show is defined by the signature show.

I All basic types (Int, Float, Char, Bool ...) are
members of all these type-classes.

I All lists and tuples of types that belong to any of these type
classes are also members of these classes.

I Higher-order types do NOT belong to Ord, Eq, Show.

I Other type-classes we have encountered include Num, Frac,

Integral, ...

I We can create our own type-classes and also add types to
type-classes. (As we shall see later.)

Type Classes ...

I In Haskell type-classes are identified by a signature: a bunch of
functions that must be defined for membership in the class.

I Ord is defined by the signature <,>,<=,>=,==,/=

I Eq is defined by the signature =,/=

I Show is defined by the signature show.

I All basic types (Int, Float, Char, Bool ...) are
members of all these type-classes.

I All lists and tuples of types that belong to any of these type
classes are also members of these classes.

I Higher-order types do NOT belong to Ord, Eq, Show.

I Other type-classes we have encountered include Num, Frac,

Integral, ...

I We can create our own type-classes and also add types to
type-classes. (As we shall see later.)

Type Classes ...

I In Haskell type-classes are identified by a signature: a bunch of
functions that must be defined for membership in the class.

I Ord is defined by the signature <,>,<=,>=,==,/=

I Eq is defined by the signature =,/=

I Show is defined by the signature show.

I All basic types (Int, Float, Char, Bool ...) are
members of all these type-classes.

I All lists and tuples of types that belong to any of these type
classes are also members of these classes.

I Higher-order types do NOT belong to Ord, Eq, Show.

I Other type-classes we have encountered include Num, Frac,

Integral, ...

I We can create our own type-classes and also add types to
type-classes. (As we shall see later.)

Type Classes ...

I In Haskell type-classes are identified by a signature: a bunch of
functions that must be defined for membership in the class.

I Ord is defined by the signature <,>,<=,>=,==,/=

I Eq is defined by the signature =,/=

I Show is defined by the signature show.

I All basic types (Int, Float, Char, Bool ...) are
members of all these type-classes.

I All lists and tuples of types that belong to any of these type
classes are also members of these classes.

I Higher-order types do NOT belong to Ord, Eq, Show.

I Other type-classes we have encountered include Num, Frac,

Integral, ...

I We can create our own type-classes and also add types to
type-classes. (As we shall see later.)

Type Classes ...

I In Haskell type-classes are identified by a signature: a bunch of
functions that must be defined for membership in the class.

I Ord is defined by the signature <,>,<=,>=,==,/=

I Eq is defined by the signature =,/=

I Show is defined by the signature show.

I All basic types (Int, Float, Char, Bool ...) are
members of all these type-classes.

I All lists and tuples of types that belong to any of these type
classes are also members of these classes.

I Higher-order types do NOT belong to Ord, Eq, Show.

I Other type-classes we have encountered include Num, Frac,

Integral, ...

I We can create our own type-classes and also add types to
type-classes. (As we shall see later.)

Type Classes ...

I In Haskell type-classes are identified by a signature: a bunch of
functions that must be defined for membership in the class.

I Ord is defined by the signature <,>,<=,>=,==,/=

I Eq is defined by the signature =,/=

I Show is defined by the signature show.

I All basic types (Int, Float, Char, Bool ...) are
members of all these type-classes.

I All lists and tuples of types that belong to any of these type
classes are also members of these classes.

I Higher-order types do NOT belong to Ord, Eq, Show.

I Other type-classes we have encountered include Num, Frac,

Integral, ...

I We can create our own type-classes and also add types to
type-classes. (As we shall see later.)

Type Classes ...

I In Haskell type-classes are identified by a signature: a bunch of
functions that must be defined for membership in the class.

I Ord is defined by the signature <,>,<=,>=,==,/=

I Eq is defined by the signature =,/=

I Show is defined by the signature show.

I All basic types (Int, Float, Char, Bool ...) are
members of all these type-classes.

I All lists and tuples of types that belong to any of these type
classes are also members of these classes.

I Higher-order types do NOT belong to Ord, Eq, Show.

I Other type-classes we have encountered include Num, Frac,

Integral, ...

I We can create our own type-classes and also add types to
type-classes. (As we shall see later.)

User defined datatypes

I The data keyword is used to define new types.

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

I Can directly use new type in functions

weekend :: Day -> Bool

weekend Sun = True

weekend Sat = True

weekend _ = False

I What about

weekend2 :: Day -> Bool

weekend2 d

| (d == Sat || d == Sun) = True

| otherwise = False

I ERROR - Instance of Eq Day required for

definition of weekend2

User defined datatypes

I The data keyword is used to define new types.

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

I Can directly use new type in functions

weekend :: Day -> Bool

weekend Sun = True

weekend Sat = True

weekend _ = False

I What about

weekend2 :: Day -> Bool

weekend2 d

| (d == Sat || d == Sun) = True

| otherwise = False

I ERROR - Instance of Eq Day required for

definition of weekend2

User defined datatypes

I The data keyword is used to define new types.

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

I Can directly use new type in functions

weekend :: Day -> Bool

weekend Sun = True

weekend Sat = True

weekend _ = False

I What about

weekend2 :: Day -> Bool

weekend2 d

| (d == Sat || d == Sun) = True

| otherwise = False

I ERROR - Instance of Eq Day required for

definition of weekend2

User defined datatypes

I The data keyword is used to define new types.

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

I Can directly use new type in functions

weekend :: Day -> Bool

weekend Sun = True

weekend Sat = True

weekend _ = False

I What about

weekend2 :: Day -> Bool

weekend2 d

| (d == Sat || d == Sun) = True

| otherwise = False

I ERROR - Instance of Eq Day required for

definition of weekend2

User defined datatypes . . .

I How about

nextday :: Day -> Day

nextday Sun = Mon

nextday Mon = Tue

...

nextday Fri = Sat

nextday Sat = Sun

I What happens if we invoke nextday Fri in ghci?

I To display a value, its type should be in the class Show with

User defined datatypes . . .

I How about

nextday :: Day -> Day

nextday Sun = Mon

nextday Mon = Tue

...

nextday Fri = Sat

nextday Sat = Sun

I What happens if we invoke nextday Fri in ghci?

I To display a value, its type should be in the class Show with

User defined datatypes . . .

I How about

nextday :: Day -> Day

nextday Sun = Mon

nextday Mon = Tue

...

nextday Fri = Sat

nextday Sat = Sun

I What happens if we invoke nextday Fri in ghci?

I To display a value, its type should be in the class Show with

Adding user-defined classes to type-classes

I “deriving” the appropriate type-classes.

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

deriving (Eq,Show)

I Default behaviour is that

I No two values are equal to each other
Mon == Mon, Tue /= Fri

I Each value is displayed as defined
show Wed == "Wed"

I Can also derive Ord

I Sun < Mon < · · · < Sat

Adding user-defined classes to type-classes

I “deriving” the appropriate type-classes.

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

deriving (Eq,Show)

I Default behaviour is that

I No two values are equal to each other
Mon == Mon, Tue /= Fri

I Each value is displayed as defined
show Wed == "Wed"

I Can also derive Ord

I Sun < Mon < · · · < Sat

Adding user-defined classes to type-classes

I “deriving” the appropriate type-classes.

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

deriving (Eq,Show)

I Default behaviour is that

I No two values are equal to each other
Mon == Mon, Tue /= Fri

I Each value is displayed as defined
show Wed == "Wed"

I Can also derive Ord

I Sun < Mon < · · · < Sat

Adding user-defined classes to type-classes

I “deriving” the appropriate type-classes.

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

deriving (Eq,Show)

I Default behaviour is that

I No two values are equal to each other
Mon == Mon, Tue /= Fri

I Each value is displayed as defined
show Wed == "Wed"

I Can also derive Ord

I Sun < Mon < · · · < Sat

Datatypes with parameters

I Attaching parameters to new types.

data Shape =

Square Float | Circle Float | Rectangle Float Float

deriving (Eq, Ord, Show)

Square 3.0, Circle 2.1, Rectangle 2.5 3.1

I area :: Shape -> Float

area (Square x) = x*x

area (Circle r) = pi*r*r

area (Rectangle l w) = l*w

where

pi = 3.1415927

I Square, Circle, . . . are called constructors, as are Sun, Mon,
. . .

I Here deriving Eq literally derives Eq from underlying == for
Float

Datatypes with parameters

I Attaching parameters to new types.

data Shape =

Square Float | Circle Float | Rectangle Float Float

deriving (Eq, Ord, Show)

Square 3.0, Circle 2.1, Rectangle 2.5 3.1

I area :: Shape -> Float

area (Square x) = x*x

area (Circle r) = pi*r*r

area (Rectangle l w) = l*w

where

pi = 3.1415927

I Square, Circle, . . . are called constructors, as are Sun, Mon,
. . .

I Here deriving Eq literally derives Eq from underlying == for
Float

Datatypes with parameters

I Attaching parameters to new types.

data Shape =

Square Float | Circle Float | Rectangle Float Float

deriving (Eq, Ord, Show)

Square 3.0, Circle 2.1, Rectangle 2.5 3.1

I area :: Shape -> Float

area (Square x) = x*x

area (Circle r) = pi*r*r

area (Rectangle l w) = l*w

where

pi = 3.1415927

I Square, Circle, . . . are called constructors, as are Sun, Mon,
. . .

I Here deriving Eq literally derives Eq from underlying == for
Float

Datatypes with parameters

I Attaching parameters to new types.

data Shape =

Square Float | Circle Float | Rectangle Float Float

deriving (Eq, Ord, Show)

Square 3.0, Circle 2.1, Rectangle 2.5 3.1

I area :: Shape -> Float

area (Square x) = x*x

area (Circle r) = pi*r*r

area (Rectangle l w) = l*w

where

pi = 3.1415927

I Square, Circle, . . . are called constructors, as are Sun, Mon,
. . .

I Here deriving Eq literally derives Eq from underlying == for
Float

Datatypes with parameters

I Attaching parameters to new types.

data Shape =

Square Float | Circle Float | Rectangle Float Float

deriving (Eq, Ord, Show)

Square 3.0, Circle 2.1, Rectangle 2.5 3.1

I area :: Shape -> Float

area (Square x) = x*x

area (Circle r) = pi*r*r

area (Rectangle l w) = l*w

where

pi = 3.1415927

I Square, Circle, . . . are called constructors, as are Sun, Mon,
. . .

I Here deriving Eq literally derives Eq from underlying == for
Float

Datatypes with parameters

I Attaching parameters to new types.

data Shape =

Square Float | Circle Float | Rectangle Float Float

deriving (Eq, Ord, Show)

Square 3.0, Circle 2.1, Rectangle 2.5 3.1

I area :: Shape -> Float

area (Square x) = x*x

area (Circle r) = pi*r*r

area (Rectangle l w) = l*w

where

pi = 3.1415927

I Square, Circle, . . . are called constructors, as are Sun, Mon,
. . .

I Here deriving Eq literally derives Eq from underlying == for
Float

Constructors ...

I Constructors such as Sun or Circle are functions.

Sun :: Day

Circle :: Float -> Shape

I They can be used exactly as other functions are used.

map Circle :: [Float] -> [Shape]

map Circle [3.0,2.8] = [Circle 3.0, Circle 2.8]

Constructors ...

I Constructors such as Sun or Circle are functions.

Sun :: Day

Circle :: Float -> Shape

I They can be used exactly as other functions are used.

map Circle :: [Float] -> [Shape]

map Circle [3.0,2.8] = [Circle 3.0, Circle 2.8]

Constructors ...

I Constructors such as Sun or Circle are functions.

Sun :: Day

Circle :: Float -> Shape

I They can be used exactly as other functions are used.

map Circle :: [Float] -> [Shape]

map Circle [3.0,2.8] = [Circle 3.0, Circle 2.8]

Constructors ...

I Constructors such as Sun or Circle are functions.

Sun :: Day

Circle :: Float -> Shape

I They can be used exactly as other functions are used.

map Circle :: [Float] -> [Shape]

map Circle [3.0,2.8] = [Circle 3.0, Circle 2.8]

Example: Films

I Store information about films

I the name of the film
I the director
I the cast

data Film = FilmC String String [String]

film1 = FilmC "Aakrosh" "Govind Nihalni"

["Naseeruddin","Om Puri", "Smita"]

film2 = FilmC "Ishqiya" " Abhishek Chaubey"

["Naseeruddin", "Vidya Balan", "Arshad Warsi"]

film3 = FilmC "Omkara" "V Bharadwaj"

["A Devgan","Saif","Kareena"]

I Extract the name of director.

director :: Film -> String

director (FilmC x y z) = y

Example: Films

I Store information about films

I the name of the film
I the director
I the cast

data Film = FilmC String String [String]

film1 = FilmC "Aakrosh" "Govind Nihalni"

["Naseeruddin","Om Puri", "Smita"]

film2 = FilmC "Ishqiya" " Abhishek Chaubey"

["Naseeruddin", "Vidya Balan", "Arshad Warsi"]

film3 = FilmC "Omkara" "V Bharadwaj"

["A Devgan","Saif","Kareena"]

I Extract the name of director.

director :: Film -> String

director (FilmC x y z) = y

Example: Films

I Store information about films

I the name of the film
I the director
I the cast

data Film = FilmC String String [String]

film1 = FilmC "Aakrosh" "Govind Nihalni"

["Naseeruddin","Om Puri", "Smita"]

film2 = FilmC "Ishqiya" " Abhishek Chaubey"

["Naseeruddin", "Vidya Balan", "Arshad Warsi"]

film3 = FilmC "Omkara" "V Bharadwaj"

["A Devgan","Saif","Kareena"]

I Extract the name of director.

director :: Film -> String

director (FilmC x y z) = y

Example: Films

I Store information about films

I the name of the film
I the director
I the cast

data Film = FilmC String String [String]

film1 = FilmC "Aakrosh" "Govind Nihalni"

["Naseeruddin","Om Puri", "Smita"]

film2 = FilmC "Ishqiya" " Abhishek Chaubey"

["Naseeruddin", "Vidya Balan", "Arshad Warsi"]

film3 = FilmC "Omkara" "V Bharadwaj"

["A Devgan","Saif","Kareena"]

I Extract the name of director.

director :: Film -> String

director (FilmC x y z) = y

Example: Films

I Store information about films

I the name of the film
I the director
I the cast

data Film = FilmC String String [String]

film1 = FilmC "Aakrosh" "Govind Nihalni"

["Naseeruddin","Om Puri", "Smita"]

film2 = FilmC "Ishqiya" " Abhishek Chaubey"

["Naseeruddin", "Vidya Balan", "Arshad Warsi"]

film3 = FilmC "Omkara" "V Bharadwaj"

["A Devgan","Saif","Kareena"]

I Extract the name of director.

director :: Film -> String

director (FilmC x y z) = y

Example: Films

I Store information about films

I the name of the film
I the director
I the cast

data Film = FilmC String String [String]

film1 = FilmC "Aakrosh" "Govind Nihalni"

["Naseeruddin","Om Puri", "Smita"]

film2 = FilmC "Ishqiya" " Abhishek Chaubey"

["Naseeruddin", "Vidya Balan", "Arshad Warsi"]

film3 = FilmC "Omkara" "V Bharadwaj"

["A Devgan","Saif","Kareena"]

I Extract the name of director.

director :: Film -> String

director (FilmC x y z) = y

Example: Films

It is customary to use the name of the type as the constructor if
there only one constructor.

data Film = Film String String [String]

film1 = Film "Aakrosh" "Govind Nihalni"

["Naseeruddin","Om Puri", "Smita"]

film2 = Film "Ishqiya" " Abhishek Chaubey"

["Naseeruddin", "Vidya Balan", "Arshad Warsi"]

film3 = Film "Omkara" "V Bharadwaj"

["A Devgan","Saif","Kareena"]

I Extract the name of director.

director :: Film -> String

director (Film x y z) = y

Example: Films

It is customary to use the name of the type as the constructor if
there only one constructor.

data Film = Film String String [String]

film1 = Film "Aakrosh" "Govind Nihalni"

["Naseeruddin","Om Puri", "Smita"]

film2 = Film "Ishqiya" " Abhishek Chaubey"

["Naseeruddin", "Vidya Balan", "Arshad Warsi"]

film3 = Film "Omkara" "V Bharadwaj"

["A Devgan","Saif","Kareena"]

I Extract the name of director.

director :: Film -> String

director (Film x y z) = y

Example: Films

It is customary to use the name of the type as the constructor if
there only one constructor.

data Film = Film String String [String]

film1 = Film "Aakrosh" "Govind Nihalni"

["Naseeruddin","Om Puri", "Smita"]

film2 = Film "Ishqiya" " Abhishek Chaubey"

["Naseeruddin", "Vidya Balan", "Arshad Warsi"]

film3 = Film "Omkara" "V Bharadwaj"

["A Devgan","Saif","Kareena"]

I Extract the name of director.

director :: Film -> String

director (Film x y z) = y

Example: Films

It is customary to use the name of the type as the constructor if
there only one constructor.

data Film = Film String String [String]

film1 = Film "Aakrosh" "Govind Nihalni"

["Naseeruddin","Om Puri", "Smita"]

film2 = Film "Ishqiya" " Abhishek Chaubey"

["Naseeruddin", "Vidya Balan", "Arshad Warsi"]

film3 = Film "Omkara" "V Bharadwaj"

["A Devgan","Saif","Kareena"]

I Extract the name of director.

director :: Film -> String

director (Film x y z) = y

More on Films

I We might want to list not just the cast, but the music
directors, editors, light boys,...

type Name = String

type Task = String

data Film = Film Name [Credits]

data Credits = Credits Task [Name]

film1 = Film "Pulp Fiction"

[Credits "Direction" ["Q Tarantino"],

Credits "Cast"

["Uma Thurman","J Travolta","S Jackson"],

Credits "Stunts" ["Cameron","Jackson"]]

More on Films

I We might want to list not just the cast, but the music
directors, editors, light boys,...

type Name = String

type Task = String

data Film = Film Name [Credits]

data Credits = Credits Task [Name]

film1 = Film "Pulp Fiction"

[Credits "Direction" ["Q Tarantino"],

Credits "Cast"

["Uma Thurman","J Travolta","S Jackson"],

Credits "Stunts" ["Cameron","Jackson"]]

More on Films

I We might want to list not just the cast, but the music
directors, editors, light boys,...

type Name = String

type Task = String

data Film = Film Name [Credits]

data Credits = Credits Task [Name]

film1 = Film "Pulp Fiction"

[Credits "Direction" ["Q Tarantino"],

Credits "Cast"

["Uma Thurman","J Travolta","S Jackson"],

Credits "Stunts" ["Cameron","Jackson"]]

More on films ...

type Name = String

type Task = String

data Film = Film Name [Credits]

data Credits = Credits Task [Name]

I Extract all the tasks for which credits are available?

listTasks :: Film -> [Task]

listTasks = (map nameTask) . extractCredits

where

extractCredits :: Film -> [Credits]

extractCredits (Film n l) = l

nameTask :: Credits -> Task

nameTask (Credits x _) = x

I listTasks film1 = ["Direction","Cast","Stunts"]

More on films ...

type Name = String

type Task = String

data Film = Film Name [Credits]

data Credits = Credits Task [Name]

I Extract all the tasks for which credits are available?

listTasks :: Film -> [Task]

listTasks = (map nameTask) . extractCredits

where

extractCredits :: Film -> [Credits]

extractCredits (Film n l) = l

nameTask :: Credits -> Task

nameTask (Credits x _) = x

I listTasks film1 = ["Direction","Cast","Stunts"]

More on films ...

type Name = String

type Task = String

data Film = Film Name [Credits]

data Credits = Credits Task [Name]

I Extract all the tasks for which credits are available?

listTasks :: Film -> [Task]

listTasks = (map nameTask) . extractCredits

where

extractCredits :: Film -> [Credits]

extractCredits (Film n l) = l

nameTask :: Credits -> Task

nameTask (Credits x _) = x

I listTasks film1 = ["Direction","Cast","Stunts"]

More on films ...

type Name = String

type Task = String

data Film = Film Name [Credits]

data Credits = Credits Task [Name]

I Extract all the tasks for which credits are available?

listTasks :: Film -> [Task]

listTasks = (map nameTask) . extractCredits

where

extractCredits :: Film -> [Credits]

extractCredits (Film n l) = l

nameTask :: Credits -> Task

nameTask (Credits x _) = x

I listTasks film1 = ["Direction","Cast","Stunts"]

