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PROGRAMMING IN HASKELL

Chapter 11 - The Countdown Problem
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What Is Countdown?

A popular quiz programme on British television 
that has been running since 1982.

Based upon an original French version called 
"Des Chiffres et Des Lettres".

Includes a numbers game that we shall refer to 
as the countdown problem.
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Example

1 3 7 10 25 50

Using the numbers

and the arithmetic operators

765

+ -  

construct an expression whose value is
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Rules

All the numbers, including intermediate results, 
must be positive naturals (1,2,3,…).

Each of the source numbers can be used at 
most once when constructing the expression.

We abstract from other rules that are adopted 
on television for pragmatic reasons.
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For our example, one possible solution is

There are 780 solutions for this example.

Changing the target number to          gives 
an example that has no solutions.

Notes:

831

(25-10)  (50+1) 765=
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Evaluating Expressions

Operators:

data Op = Add | Sub | Mul | Div

Apply an operator:

apply         :: Op  Int  Int  Int
apply Add x y  = x + y
apply Sub x y  = x - y
apply Mul x y  = x * y
apply Div x y  = x `div` y



7

Decide if the result of applying an operator to two 
positive natural numbers is another such:

valid         :: Op  Int  Int  Bool
valid Add _ _  = True
valid Sub x y  = x > y
valid Mul _ _  = True
valid Div x y  = x `mod` y == 0

Expressions:

data Expr = Val Int | App Op Expr Expr
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eval            :: Expr  [Int]
eval (Val n)     = [n | n > 0]
eval (App o l r) = [apply o x y | x  eval l
                                , y  eval r
                                , valid o x y]

Return the overall value of an expression, provided 
that it is a positive natural number:

Either succeeds and returns a singleton 
list, or fails and returns the empty list.
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Formalising The Problem

Return a list of all possible ways of choosing zero 
or more elements from a list:

choices :: [a]  [[a]]

For example:

> choices [1,2]

[[],[1],[2],[1,2],[2,1]]
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Return a list of all the values in an expression:

values            :: Expr  [Int]
values (Val n)     = [n]
values (App _ l r) = values l ++ values r

Decide if an expression is a solution for a given list 
of source numbers and a target number:

solution       :: Expr  [Int]  Int  Bool
solution e ns n = elem (values e) (choices ns)
                  && eval e == [n]
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Brute Force Solution

Return a list of all possible ways of splitting a list 
into two non-empty parts:

split :: [a]  [([a],[a])]

For example:

> split [1,2,3,4]

[([1],[2,3,4]),([1,2],[3,4]),([1,2,3],[4])]
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Return a list of all possible expressions whose values 
are precisely a given list of numbers:

exprs    :: [Int]  [Expr]
exprs []  = []
exprs [n] = [Val n]
exprs ns  = [e | (ls,rs)  split ns
               , l        exprs ls
               , r        exprs rs
               , e        combine l r]

The key function in this lecture.
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combine    :: Expr  Expr  [Expr]
combine l r =
   [App o l r | o  [Add,Sub,Mul,Div]]

Combine two expressions using each operator:

solutions     :: [Int]  Int  [Expr]
solutions ns n = [e | ns'  choices ns
                    , e    exprs ns'
                    , eval e == [n]]

Return a list of all possible expressions that solve an 
instance of the countdown problem:
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How Fast Is It?

System:

Compiler:

Example:

One solution:

All solutions:

solutions [1,3,7,10,25,50] 765

1.2GHz Pentium M laptop

GHC version 6.4.1

0.36 seconds   

43.98 seconds
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Many of the expressions that are considered 
will typically be invalid - fail to evaluate. 

For our example, only around 5 million of the 
33 million possible expressions are valid.

Combining generation with evaluation would 
allow earlier rejection of invalid expressions.

Can We Do Better?
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results   :: [Int]  [Result]
results ns = [(e,n) | e  exprs ns
                    , n  eval e]

type Result = (Expr,Int)

Valid expressions and their values:

We seek to define a function that fuses together 
the generation and evaluation of expressions:

Fusing Two Functions 
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results []  = []
results [n] = [(Val n,n) | n > 0]
results ns  =
   [res | (ls,rs)  split ns
        , lx       results ls
        , ry       results rs
        , res      combine' lx ry]

This behaviour is achieved by defining

combine' :: Result  Result  [Result]

where
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solutions'     :: [Int]  Int  [Expr]
solutions' ns n =
   [e | ns'    choices ns
      , (e,m)  results ns'
      , m == n]

New function that solves countdown problems:

combine’ (l,x) (r,y) =
   [(App o l r, apply o x y)
      | o  [Add,Sub,Mul,Div]
      , valid o x y]

Combining results:
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How Fast Is It Now?

Example:

One solution:

All solutions:

solutions' [1,3,7,10,25,50] 765

0.04 seconds   

3.47 seconds

Around 10 
times faster in 

both cases.
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Many expressions will be essentially the same 
using simple arithmetic properties, such as:

Exploiting such properties would considerably 
reduce the search and solution spaces.

Can We Do Better?

x  y y  x

x  1 x

=

=
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Exploiting Properties

Strengthening the valid predicate to take account 
of commutativity and identity properties:

valid         :: Op  Int  Int  Bool

valid Add x y  = True

valid Sub x y  = x > y

valid Mul x y  = True

valid Div x y  = x `mod` y == 0

x  
y
x  y && x  
1
x  y && x  1 && y  
1

x  
y

&& y  
1
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How Fast Is It Now?

Example:

Valid:

Solutions:

solutions'' [1,3,7,10,25,50] 765

250,000 expressions

49 expressions

Around 20 
times less.

Around 16 
times less.
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One solution:

All solutions:

0.02 seconds   

0.44 seconds

Around 2 
times faster.

Around 7 
times faster.

More generally, our program usually produces a 
solution to problems from the television show in 
an instant, and all solutions in under a second.
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