Introduction to Programming: Lecture 10

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

10 Sep 2013


http://www.cmi.ac.in/~kumar

Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 % +



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 % +

3



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 % +

35



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +

358



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +

3 (6 8 %)



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +

3 40



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +

(3 40 +)



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 % +

43



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 % +
43

» Another example:



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -

2



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -

2 3



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -

(2 3 +)



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -

5



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -

57



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -

57 2



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -

5 (7 2 +)



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -

59



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -

(59 -)



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -

-4



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -

-4



Evaluating postfix expressions

» Follow the bracketing algorithm, and evaluate each expression
as it is created.

358 *x +
43

» Another example:
23+7 2+ -

-4
» Keep a stack of numbers.

» If you see a number, push it on to the stack.
» If you seen an operator, remove the top two elements from the
stack, evaluate and push the result on the stack.



Programming the calculator in Haskell

» The structure of the program:



Programming the calculator in Haskell

» The structure of the program:

» A module to manage stacks.



Programming the calculator in Haskell

» The structure of the program:

» A module to manage stacks.

» A module that handles expressions and their evalutation.



» Methods empty, push, pop and isempty.

«4O0>r «Fr « >

4« =

DA



The Stack module

> Methods empty, push, pop and isempty.

» As general a type as possible for Stack.



The Stack module

> Methods empty, push, pop and isempty.

» As general a type as possible for Stack.
data Stack a = Empty | Stack a (Stack a)
empty :: Stack a
empty = Empty

push :: a -> Stack a -> Stack a
push x st = Stack x st

pop :: Stack a -> (a, Stack a)
pop (Stack x st) = (x, st)

isempty :: Stack a -> Bool
isempty Empty = True
isempty _ = False

u]
)
I
il
it




The Stack module

> Methods empty, push, pop and isempty.
» As general a type as possible for Stack.

data Stack a = Empty | Stack a (Stack a)
empty :: Stack a
empty = Empty

push :: a -> Stack a -> Stack a
push x st = Stack x st

pop :: Stack a -> (a, Stack a)
pop (Stack x st) = (x, st)

isempty :: Stack a -> Bool
isempty Empty = True
isempty _ = False

> It looks very much like a 1ist!



The Stack module via lists

data Stack a = Stack [a]
empty :: Stack a
empty = Stack []

push :: a -> Stack a -> Stack a
push x (Stack 1ls) = Stack (x:1s)

pop :: Stack a -> (a, Stack a)
pop (Stack (x:1s)) = (x, Stack 1ls)

isempty :: Stack a —-> Bool
isempty (Stack []) = True
isempty _ False



The Stack Module

» The module exports the following



The Stack Module

» The module exports the following
» The data type Stack without any of its constructors.



The Stack Module

» The module exports the following
» The data type Stack without any of its constructors.

> The methods empty, push, pop and isempty



The Stack Module

» The module exports the following
» The data type Stack without any of its constructors.

> The methods empty, push, pop and isempty
module Stack(Stack(),empty,push,pop,isempty) where

data Stack a =
empty :: Stack a
push :: a -> Stack a —-> Stack a

pop :: Stack a -> (a, Stack a)

isempty :: Stack a -> Bool



The calculator module

» The postfix expression is a sequence of integers and operators.



The calculator module

» The postfix expression is a sequence of integers and operators.
» How do we represent it in Haskell?



The calculator module

» The postfix expression is a sequence of integers and operators.
» How do we represent it in Haskell?

» We use the word Token to denote an element of the
expression



The calculator module

» The postfix expression is a sequence of integers and operators.
» How do we represent it in Haskell?

» We use the word Token to denote an element of the
expression

data Token = Val Int | Op Char



The calculator module

» The postfix expression is a sequence of integers and operators.
» How do we represent it in Haskell?

» We use the word Token to denote an element of the
expression

data Token = Val Int | Op Char

type Expr = [Token]



Evaluating an expression

» An one step evaluation function:



Evaluating an expression

» An one step evaluation function:
evalStep :: Stack Int -> Token -> Stack Int



Evaluating an expression

» An one step evaluation function:
evalStep :: Stack Int -> Token -> Stack Int

evalStep st (Val i) = push i st
evalStep st (Op c)

| ¢ ==+ = push (v2 + v1) st2
| ¢ == - = push (v2 - vl) st2
| ¢ == ’x> = push (v2 * vl) st2
where
(vi,stl) = pop st
(v2,st2) = pop stil



Evaluating an expression

» An one step evaluation function:
evalStep :: Stack Int -> Token -> Stack Int

evalStep st (Val i) = push i st
evalStep st (Op c)

| ¢ ==+ = push (v2 + v1) st2
| ¢ == - = push (v2 - vl) st2
| ¢ == ’x> = push (v2 * vl) st2
where
(vi,stl) = pop st
(v2,st2) = pop stil

» How to iterate this and evaluate the entire expression?



Evaluating an expression



Evaluating an expression

» The top of stack has the answer at the end.



Evaluating an expression

» The top of stack has the answer at the end.

evalExp st [] = fst (pop st)



Evaluating an expression

» The top of stack has the answer at the end.

evalExp st [] = fst (pop st)

» Otherwise, evaluate recursively using evalStep



Evaluating an expression
» The top of stack has the answer at the end.
evalExp st [] = fst (pop st)

» Otherwise, evaluate recursively using evalStep

evalExp st (e:es) = evalExp (evalStep st e) es



Evaluating an expression
» The top of stack has the answer at the end.
evalExp st [] = fst (pop st)

» Otherwise, evaluate recursively using evalStep

evalExp st (e:es) = evalExp (evalStep st e) es

evaluate exp = evalExp empty exp



Evaluating an expression
» The top of stack has the answer at the end.
evalExp st [] = fst (pop st)

» Otherwise, evaluate recursively using evalStep

evalExp st (e:es) = evalExp (evalStep st e) es
evaluate exp = evalExp empty exp

» Now, we can use any implementation of the Stack and it
works identically.



Queues

» Queues follow the First-in first-out rule.



Queues

» Queues follow the First-in first-out rule.

» Required operations



Queues

» Queues follow the First-in first-out rule.

» Required operations
emptyq :: Queue a
addq :: a -> (Queue a) -> (Queue a)
removeq :: (Queue a) -> (a,Queue a)
isemptyq :: (Queue a) -> Bool



Queues

» Queues follow the First-in first-out rule.
» Required operations
emptyq :: Queue a

addq :: a -> (Queue a) -> (Queue a)
removeq :: (Queue a) -> (a,Queue a)
isemptyq :: (Queue a) -> Bool

» Again, represent a queue using a list

data Queue a = Qu [a]

emptyq = Qu []

addg x (Qu xs) = (Qu (xs ++ [x]))
removeq (Qu (x:xs)) = (x,Qu xs)
isempty (Qu 1) = (1 == [])



> Inserting takes O(n) time!

«O>r «Fr <

thit
v

DA



Queues . ..

> Inserting takes O(n) time!
> If we reverse the representation?

addg x (Qu xs) = (Qu (x:xs))
removeq (Qu xs) = ((last x),Qu (init xs))



Queues . ..

> Inserting takes O(n) time!
> If we reverse the representation?

addg x (Qu xs) = (Qu (x:xs))
removeq (Qu xs) = ((last x),Qu (init xs))

Now, removing an element takes O(n) time.

Adding and removing n elements could take O(n?) time



DHa



Queues with two lists

» Use two lists



Queues with two lists

» Use two lists

» Split queue and store the rear in reversed order in a reversed

Represent [g1, g2, ..., q,]
as [q1. g2, ... ail, [Gn, Gn—1, - - -, qi+1]



Queues with two lists

» Use two lists

» Split queue and store the rear in reversed order in a reversed

Represent [g1, g2, ..., q,]
as [q1. g2, ... ail, [Gn, Gn—1, - - -, qi+1]

» addq adds an element at beginning of second list in time O(1)



Queues with two lists

» Use two lists

» Split queue and store the rear in reversed order in a reversed
Represent [g1, 92, . . ., qn)
as [q1, 92, - -, qils [Gn, Gn—1,- - -, git1]

» addq adds an element at beginning of second list in time O(1)

> removeq removes the element at the beginning of first list in
time O(1), if this list is nonempty!



Queues with two lists

» Use two lists

» Split queue and store the rear in reversed order in a reversed
Represent [g1, 92, . . ., qn)
as [q1, 92, - -, qils [Gn, Gn—1,- - -, git1]

» addq adds an element at beginning of second list in time O(1)

> removeq removes the element at the beginning of first list in
time O(1), if this list is nonempty!

v

What happens if the first list is empty?



Queues with two lists

v

v

Use two lists
Split queue and store the rear in reversed order in a reversed

Represent [g1, 92, . . ., qn)
as [g1. G0, ail, [qn, Gn-1, - - -, qi+1]

addq adds an element at beginning of second list in time O(1)

removeq removes the element at the beginning of first list in
time O(1), if this list is nonempty!

What happens if the first list is empty?

If the first list is empty, reverse the second list on to the first
list and then remove the first element.



data Queue a = Nuqu [a] [a]

«O>r «Fr <

nae



Queues . ..

data Queue a = Nuqu [a] [a]
» Definition of queue functions
> addq adds to second list
addg x (Nuqu ys zs) = Nuqu ys (x:zs)



Queues . ..

data Queue a = Nuqu [a] [a]

» Definition of queue functions

> addq adds to second list
addg x (Nuqu ys zs) = Nuqu ys (x:zs)

» removeq takes from first list, reversing elements from second
list into first list if necessary

removeq (Nuqu (x:xs) ys) = (x,Nuqu xs ys)
removeq (Nuqu [] ys) = removeq (Nuqu (reverse ys) [])



Queues . ..

data Queue a = Nuqu [a] [a]
» Definition of queue functions
> addq adds to second list
addg x (Nuqu ys zs) = Nuqu ys (x:zs)

» removeq takes from first list, reversing elements from second
list into first list if necessary

removeq (Nuqu (x:xs) ys) = (x,Nuqu xs ys)
removeq (Nuqu [] ys) = removeq (Nuqu (reverse ys) [])

» If we add n elements, we get a queue Nuqu [1 [qn,...,ql]



Queues . ..

data Queue a = Nuqu [a] [a]
» Definition of queue functions
> addq adds to second list
addg x (Nuqu ys zs) = Nuqu ys (x:zs)

» removeq takes from first list, reversing elements from second
list into first list if necessary

removeq (Nuqu (x:xs) ys) = (x,Nuqu xs ys)
removeq (Nuqu [] ys) = removeq (Nuqu (reverse ys) [])
» If we add n elements, we get a queue Nuqu [1 [qn,...,ql]

» Next removeq takes O(n) time to reverse the second list



Queues . ..

data Queue a = Nuqu [a] [a]
» Definition of queue functions
> addq adds to second list
addg x (Nuqu ys zs) = Nuqu ys (x:zs)

» removeq takes from first list, reversing elements from second
list into first list if necessary

removeq (Nuqu (x:xs) ys) = (x,Nuqu xs ys)
removeq (Nuqu [] ys) = removeq (Nuqu (reverse ys) [])
» If we add n elements, we get a queue Nuqu [1 [qn,...,ql]

» Next removeq takes O(n) time to reverse the second list
> After one removeq, we have Nuqu [q2,...,qn] []
» Next n — 1 removeq operations take time O(1)!



Amortised analysis

» How many times is an element touched.



Amortised analysis

» How many times is an element touched.

» Once when it is inserted (into the second list)



Amortised analysis

» How many times is an element touched.

» Once when it is inserted (into the second list)
» Twice when it moves from the second list to the first list.



Amortised analysis

» How many times is an element touched.

» Once when it is inserted (into the second list)
» Twice when it moves from the second list to the first list.
» Once when it is removed (from the first list)



Amortised analysis

» How many times is an element touched.

» Once when it is inserted (into the second list)
» Twice when it moves from the second list to the first list.
» Once when it is removed (from the first list)

» Each element can be touched only four times.



Amortised analysis

» How many times is an element touched.

» Once when it is inserted (into the second list)
» Twice when it moves from the second list to the first list.
» Once when it is removed (from the first list)

» Each element can be touched only four times.

> In any sequence of /V instructions at most // elements are
involved.



Amortised analysis

» How many times is an element touched.

» Once when it is inserted (into the second list)
» Twice when it moves from the second list to the first list.
» Once when it is removed (from the first list)

» Each element can be touched only four times.

> In any sequence of /V instructions at most // elements are
involved.

» Any sequence of \ instructions can take only O(/V) steps!



The Set datastructure

» Maintain a collection of distinct elements and support the
following operations



The Set datastructure

» Maintain a collection of distinct elements and support the
following operations

» insert : inserts a given value into the set.



The Set datastructure

» Maintain a collection of distinct elements and support the
following operations

» insert : inserts a given value into the set.

» delete : deletes a given value from the set.



The Set datastructure

» Maintain a collection of distinct elements and support the
following operations
» insert : inserts a given value into the set.
» delete : deletes a given value from the set.

» search : checks whether a given value is an element of the
set.



The Set datastructure

» Maintain a collection of distinct elements and support the
following operations
» insert : inserts a given value into the set.
» delete : deletes a given value from the set.

» search : checks whether a given value is an element of the
set.

data Eq a => Set a = Set [a]



The Set datastructure

» Maintain a collection of distinct elements and support the
following operations
» insert : inserts a given value into the set.
» delete : deletes a given value from the set.

» search : checks whether a given value is an element of the
set.

data Eq a => Set a = Set [a]

search x (Set y)= elem x y



The Set datastructure

» Maintain a collection of distinct elements and support the
following operations
» insert : inserts a given value into the set.
» delete : deletes a given value from the set.

» search : checks whether a given value is an element of the
set.

data Eq a => Set a = Set [a]

search x (Set y)= elem x y

insert x (Set s)
| elem x (Set s) = Set s
| otherwise = Set (x:s)



The Set datastructure

» Maintain a collection of distinct elements and support the
following operations
» insert : inserts a given value into the set.
» delete : deletes a given value from the set.
» search : checks whether a given value is an element of the
set.
data Eq a => Set a = Set [a]
search x (Set y)= elem x y
insert x (Set s)

| elem x (Set s) = Set s
| otherwise = Set (x:s)

delete x (Set s) = Set (filter (/= x) s)



Complexity of the operations



Complexity of the operations

» search takes linear time.



Complexity of the operations

» search takes linear time.

» insert takes linear time.



Complexity of the operations

» search takes linear time.
» insert takes linear time.

» delete takes linear time.



Complexity of the operations

search takes linear time.

v

insert takes linear time.

v

delete takes linear time.

v

v

A sequence of |\ operations can take O(/N?) time.



Complexity of the operations

search takes linear time.

v

insert takes linear time.

v

delete takes linear time.

v

A sequence of |\ operations can take O(/N?) time.

v

v

We can do better if the elements of the type a can be ordered.



A datatype for binary trees

» Trees are recursive datatypes

> A tree is either

» Empty
» Or is a node containing a value and two trees

X

left right




The binary tree datatype



data Btree a = Nil | Node (Btree a) a (Btree a)

«4O0>r «Fr « >

4« =

DA



The binary tree datatype
data Btree a = Nil | Node (Btree a) a (Btree a)

» Nil and Node are the constructors.



The binary tree datatype
data Btree a = Nil | Node (Btree a) a (Btree a)
» Nil and Node are the constructors.

» Nil represents the empty tree.



The binary tree datatype
data Btree a = Nil | Node (Btree a) a (Btree a)
» Nil and Node are the constructors.

» Nil represents the empty tree.

» A nonempty tree (identified by the constructor Node) has
three parts
> A left (sub-)tree
» A value
> A right (sub-)tree



Node (Node Nil 2 Nil) 3 (Node Nil 5 Nil)

«O>r «Fr « >

«E

>

DA



Node (Node Nil 2 Nil) 3 (Node Nil 5 Nil)
3
/ \

«O>r «Fr « >

4« =

DA



2 5

Node (Node Nil 2 Nil) 3 (Node Nil 5 Nil)
3
/ \

Node (Node Nil 4 Nil) 6

(Node (Node Nil 2 Nil)

3 (Node Nil 5 Nil))

«O>r «Fr « >

4« =

DA



2 5

Node (Node Nil 2 Nil) 3 (Node Nil 5 Nil)
3
/ \

Node (Node Nil 4 Nil) 6

(Node (Node Nil 2 Nil) 3 (Node Nil 5 Nil))
6

/ \
4 3

/ \
5

2

«O>r «Fr « >

4« =

DA



» What about
4
/\
2

/ \

<O> <Fr <E»

«E>»

DHa



» What about
4
/ \
2

5
/ \
1 3

4 (Node Nil 5 Nil)

Node (Node (Node Nil 1 Nil) 2 (Node Nil 3 Nil))

«4O0>r «Fr « >

4« =

DA



Functions on Binary trees

» size — Number of nodes in the tree



Functions on Binary trees
» size — Number of nodes in the tree
size :: Btree a -> Int

size Nil = O
size (Node tl x tr) =1 + (size tl) + (size tr)



Functions on Binary trees
» size — Number of nodes in the tree
size :: Btree a -> Int
size Nil = O

size (Node tl x tr) =1 + (size tl) + (size tr)

» height — Longest path from the root to a leaf



Functions on Binary trees
» size — Number of nodes in the tree

size :: Btree a -> Int
size Nil = O
size (Node tl x tr) =1 + (size tl) + (size tr)

» height — Longest path from the root to a leaf

height :: Btree a -> Int
height Nil = 0O
height (Node tl1 x tr) =
1 + (max (height t1) (height tr))



Levels

> List nodes level by level and from left to right within each
level.

/\

/\



Levels

> List nodes level by level and from left to right within each
level.

/\

/\

[4,2,5,1,3]



