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Compiling into executables

I So far,
I All inputs were supplied as arguments to functions from ghci
I Outputs were printed out by ghci

I Works as long as programs are run from within an interpreter.

I What if we want to compile programs into executables?

I The Haskell programs described so far cannot be compiled
into executables.

I For eg. they don’t specify what function has to be computed.
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Compiling ...

I Consider the Haskell program

main = putStrLn ("My First Compilable Program")

I Compile the program using ghc

ghc –make Out.hs

I Computes all the module dependencies and compiles all the
modules.

I Run by executing the program Out

I How do we give inputs to a Haskell program that is compiled
and executed?
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Input/Output in Haskell

I Here is a simple program that does both input and output.

main = do

putStrLn ("Please enter your name:")

name <- getLine

putStrLn ("Hello " ++ name)

I main is the name of the action that is executed when a
compiled Haskell program is run.

I main, putStrLn s, getLine are all actions.

I The do command puts together a sequence of actions into a
larger action.

I These actions are executed sequentially, that is, one after the
other.
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The type of Actions

I What is the type of main in this example?

main : IO ()

I The type () is the type with a single value, also denoted ().

I What are the types of putStrLn and getLine ?

putStrLn :: String -> IO ()

getLine :: IO String

I The qualifier IO in all these types indicate that the function
also performs some Input/Output.

I The type of a do .. statement is the type of the last action.

The type of an action v <- e is the type of e.
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Actions

I An action is an expression of type IO a for some a.

main, putStrLn s and getLine are all actions.

I In Haskell, any Input/Output must occur within expressions of
type IO a for some a.

I Actions are first class values and for most part can be used
like other normal values.

alist = map putStrLn ["one","two","three"]

c = head alist

I As expected, we have

alist :: [IO ()]

c :: IO ()
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I/O ...

I A function with an integer for an argument and returning an
integer has type
Int -> Int

while one that also does some IO has type
(Int -> IO Int)

What is the need for such a distinction?

I The kind of Haskell functions we have so far seen in this
course are called pure functions.

Their type gives all the information we need about them.

I For functions that also do IO, the types of the arguments and
the return value by themselves do not reveal everything.

I Input/Output involves changing the outside world.
state change

I I/O Actions have to be composed sequentially, that is, the
order of execution is critical.
(eg.) Reading in different orders will result in different
behaviours.
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Combining Pure and IO functions

I Haskell type system allows us use pure and action parts in a
safe manner.

I There is no mechanism to execute an action from within a
pure function.

I I/O is performed by an action only if it that action is
performed, i.e. executed from within another action.

The main action is where all the action begins!
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I/O Examples ...

I Read a line and print it out twice

main = do

inp <- getLine

putStrLn inp;

putStrLn inp;

I Read a line and print it out as many times as its length

main = do

inp <- getLine

ltimes (length inp) inp

ltimes :: Int -> String -> IO ()

ltimes 1 l = putStrLn l

ltimes n l = do

putStrLn l

ltimes (n-1) l
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Example ...

I Read a line w. Read and output as many lines as length of w.

main = do

linp <- getLine

ltimesrw (length linp)

ltimesrw :: Int -> IO ()

ltimesrw 1 = do

inp <- getLine

putStrLn inp

ltimesrw n = do

inp <- getLine

putStrLn inp

ltimesrw (n-1)

I Suggests that we should write a function to do an action n
times.
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ntimes

I Repeat an action n times.
ntimes :: Int -> IO () -> IO ()

ntimes 1 s = s

ntimes n s = do

s

ntimes (n-1) s

I Then we can write
action1 = do

inp <- getLine

ntimes (length inp)

(putStrLn inp)

I and
action2 = do

linp <- getLine

ntimes (length linp)

(do

inp <- getLine

putStrLn inp)
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Reading other types

I The function readLn reads a value of any type a that is an
instance of Read a

readLn :: (Read a) => IO a

I All basic types (Int, Float, Bool, ...) are instances of
Read.

main = do

inp <- (readLn :: IO Bool)

putStrLn (show inp)

I readLn reads a value of the appropriate type appearing by
itself in a line.

main = do

inp <- (readLn :: IO Float)

putStrLn (show (inp*inp))
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IO Examples

I Read a list of positive integers, terminated by a -1, into a
list and print the sum.

main = do

ls <- (readlist [])

putStrLn (sum ls)

readlist :: [Int] -> IO [Int]

readlist l = do

inp <- (readLn :: IO Int)

if (inp == -1)

then l

else readlist (inp:l)

I This is not typed correctly. l has type [Int] and not IO
[Int].
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Example ...

readlist :: [Int] -> IO [Int]

readlist l = do

inp <- (readLn :: IO Int)

if (inp == -1)

then (return l)

else readlist (inp:l)

I The function return sends value of type a to a value of type
IO a

I Note that there is no obvious way to construct a useful
function of type IO a -> b where b is not an action.

This is towards a clean separation of the pure fragments of
the program (that do no I/O) and the IO parts.
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