
Introduction to Programming: Lecture 20

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

24 October 2013

http://www.cmi.ac.in/~kumar


Graphs

1

2

3

4

5

6



Graphs

1

2

3

4

5

6

◮ Represent edges in the graph as a function

type Vert = Int

maxvert = 6

edge :: Vert -> Vert -> Bool

edge 1 2 = True

edge 1 4 = True

...

edge 5 6 = True

edge _ _ = False



Graphs

1

2

3

4

5

6

◮ Represent edges in the graph as a function

type Vert = Int

maxvert = 6

edge :: Vert -> Vert -> Bool

edge 1 2 = True

edge 1 4 = True

...

edge 5 6 = True

edge _ _ = False

◮ Goal: define reachable :: Vert -> [Vert]



Graphs . . .

◮ Inductive definition of reachable v



Graphs . . .

◮ Inductive definition of reachable v

◮ v is reachable from v
◮ x is reachable from v and edge x y then y is also reachable

from v.



Graphs . . .

◮ Inductive definition of reachable v

◮ v is reachable from v
◮ x is reachable from v and edge x y then y is also reachable

from v.

◮ Cannot directly translate this definition into Haskell

◮ extend picks up the neighbours of a given vertex.

extend :: Vert -> [Vert]

extend v = [w | w <- [1..maxvert], edge v w]



Reachability ...

◮ Now, vertices reachable from v can be identified as

extendall :: [Vert] -> [Vert]

extendall = concatMap extend



Reachability ...

◮ Now, vertices reachable from v can be identified as

extendall :: [Vert] -> [Vert]

extendall = concatMap extend

◮ Computes all vertices reachable in one step.



Reachability ...

◮ Now, vertices reachable from v can be identified as

extendall :: [Vert] -> [Vert]

extendall = concatMap extend

◮ Computes all vertices reachable in one step.

◮ Find all vertices reachable in ≤ maxvert steps.



Reachability ...

◮ Now, vertices reachable from v can be identified as

extendall :: [Vert] -> [Vert]

extendall = concatMap extend

◮ Computes all vertices reachable in one step.

◮ Find all vertices reachable in ≤ maxvert steps.

reachable v = concat (take maxvert

(iterate extendall [v]))



Reachability ...

◮ Now, vertices reachable from v can be identified as

extendall :: [Vert] -> [Vert]

extendall = concatMap extend

◮ Computes all vertices reachable in one step.

◮ Find all vertices reachable in ≤ maxvert steps.

reachable v = concat (take maxvert

(iterate extendall [v]))

◮ There are repetitions at each level.



Reachability ...

◮ Now, vertices reachable from v can be identified as

extendall :: [Vert] -> [Vert]

extendall = concatMap extend

◮ Computes all vertices reachable in one step.

◮ Find all vertices reachable in ≤ maxvert steps.

reachable v = concat (take maxvert

(iterate extendall [v]))

◮ There are repetitions at each level.

◮ Use Set instead of lists.



Reachability ...

◮ Now, vertices reachable from v can be identified as

extendall :: [Vert] -> [Vert]

extendall = concatMap extend

◮ Computes all vertices reachable in one step.

◮ Find all vertices reachable in ≤ maxvert steps.

reachable v = concat (take maxvert

(iterate extendall [v]))

◮ There are repetitions at each level.

◮ Use Set instead of lists.

or remove duplicates after each level is generated.



Without Duplicates

reachable v = concat (take maxvert

(iterate (remDup.extendall) [v]))



Without Duplicates

reachable v = concat (take maxvert

(iterate (remDup.extendall) [v]))

where remDup removes duplicates in a list.



Avoiding duplicate expands

◮ Vertices repeat at different levels. Can we do better?



Avoiding duplicate expands

◮ Vertices repeat at different levels. Can we do better?

◮ Why not expand only vertices that have not been expanded
already?



Avoiding duplicate expands

◮ Vertices repeat at different levels. Can we do better?

◮ Why not expand only vertices that have not been expanded
already?

◮ Keep two lists,
◮ one with elements that are reachable and which have been

expanded
◮ one with elements that are reachable and which have not been

expanded yet.



Avoiding duplicate expands

◮ Vertices repeat at different levels. Can we do better?

◮ Why not expand only vertices that have not been expanded
already?

◮ Keep two lists,
◮ one with elements that are reachable and which have been

expanded
◮ one with elements that are reachable and which have not been

expanded yet.

◮ In each iteration pick an element from the second list.



Avoiding duplicate expands

◮ Vertices repeat at different levels. Can we do better?

◮ Why not expand only vertices that have not been expanded
already?

◮ Keep two lists,
◮ one with elements that are reachable and which have been

expanded
◮ one with elements that are reachable and which have not been

expanded yet.

◮ In each iteration pick an element from the second list.
◮ Expand the element and move it to the first list.
◮ Add all new elements in the expansion to the second list.



Avoiding duplicate expands

◮ Vertices repeat at different levels. Can we do better?

◮ Why not expand only vertices that have not been expanded
already?

◮ Keep two lists,
◮ one with elements that are reachable and which have been

expanded
◮ one with elements that are reachable and which have not been

expanded yet.

◮ In each iteration pick an element from the second list.
◮ Expand the element and move it to the first list.
◮ Add all new elements in the expansion to the second list.

◮ Continue till the second list is empty



Avoiding duplicate expands

◮ Vertices repeat at different levels. Can we do better?

◮ Why not expand only vertices that have not been expanded
already?

◮ Keep two lists,
◮ one with elements that are reachable and which have been

expanded
◮ one with elements that are reachable and which have not been

expanded yet.

◮ In each iteration pick an element from the second list.
◮ Expand the element and move it to the first list.
◮ Add all new elements in the expansion to the second list.

◮ Continue till the second list is empty

This is the function step.



Avoiding repetition

step:: ([Vert], [Vert]) -> ([Vert], [Vert])

step (s,[]) = s

step (s,x:t) = (x:s,nt)

where

tmp = extend x

nt = t ++ filter g tmp

g y = not (elems y s) && not (elems y t)



Avoiding repetition

step:: ([Vert], [Vert]) -> ([Vert], [Vert])

step (s,[]) = s

step (s,x:t) = (x:s,nt)

where

tmp = extend x

nt = t ++ filter g tmp

g y = not (elems y s) && not (elems y t)

◮ Iterate step to get the answer.

iterstep (s,t)

| (t == []) = (s,[])

| otherwise = iterstep (step (s,t))

reachable v = iterstep ([],[v])



Search problems

◮ Place n queens on n × n chessboard to not attack each other



Search problems

◮ Place n queens on n × n chessboard to not attack each other

◮ Queens attack along rows, columns and diagonals
◮ Should have exactly one queen on each row and column



Search problems

◮ Place n queens on n × n chessboard to not attack each other

◮ Queens attack along rows, columns and diagonals
◮ Should have exactly one queen on each row and column

◮ Naive strategy

◮ Place first queen on leftmost square of first row
◮ In each new row, place queen at leftmost safe square



Search problems

◮ Place n queens on n × n chessboard to not attack each other

◮ Queens attack along rows, columns and diagonals
◮ Should have exactly one queen on each row and column

◮ Naive strategy

◮ Place first queen on leftmost square of first row
◮ In each new row, place queen at leftmost safe square

◮ After 7 moves we find no safe squares on bottom row

Q

Q

Q

Q

Q

Q

Q



Backtracking



Backtracking

◮ Go back and try new position for 7th queen



Backtracking

◮ Go back and try new position for 7th queen

◮ After all possibilities for 7th queen exhausted, go back and try
new position for 6th queen



Backtracking

◮ Go back and try new position for 7th queen

◮ After all possibilities for 7th queen exhausted, go back and try
new position for 6th queen

◮ Similarly go back to 5th queen, 4th queen, . . . , 1st queen



Backtracking . . .

[]

[1] [2] [3] [4] [5] [6] [7] [8]

... ... ... ... ... ... ...

[1,3] [1,4] [1,5] [1,6] [1,7] [1,8]

... ... ... ... ...

[1,3,5] [1,3,6] [1,3,7] [1,3,8]

... ... ...

[1,3,5,7] [1,3,5,8]

... ...



Backtracking via Generate and Test

◮ In Haskell this can be implemented as follows . . .

◮ Represent (partial) placement of queens as a list
◮ Position i is column number of queen in row i+1

Earlier board is represented [1,3,5,7,2,4,6]



Backtracking via Generate and Test

◮ In Haskell this can be implemented as follows . . .

◮ Represent (partial) placement of queens as a list
◮ Position i is column number of queen in row i+1

Earlier board is represented [1,3,5,7,2,4,6]

◮ extend computes all ways to extend a placement by one row



Backtracking via Generate and Test

◮ In Haskell this can be implemented as follows . . .

◮ Represent (partial) placement of queens as a list
◮ Position i is column number of queen in row i+1

Earlier board is represented [1,3,5,7,2,4,6]

◮ extend computes all ways to extend a placement by one row

◮ extendall maps extend over all placements on k rows to
get all placements on k+1 rows



Backtracking via Generate and Test

◮ In Haskell this can be implemented as follows . . .

◮ Represent (partial) placement of queens as a list
◮ Position i is column number of queen in row i+1

Earlier board is represented [1,3,5,7,2,4,6]

◮ extend computes all ways to extend a placement by one row

◮ extendall maps extend over all placements on k rows to
get all placements on k+1 rows

◮ All possible placements of n queens

◮ allqueens n = head (drop n (iterate extendall

[[]]))



Backtracking via Generate and Test

◮ In Haskell this can be implemented as follows . . .

◮ Represent (partial) placement of queens as a list
◮ Position i is column number of queen in row i+1

Earlier board is represented [1,3,5,7,2,4,6]

◮ extend computes all ways to extend a placement by one row

◮ extendall maps extend over all placements on k rows to
get all placements on k+1 rows

◮ All possible placements of n queens

◮ allqueens n = head (drop n (iterate extendall

[[]]))

◮ One placement of n queens

◮ queens n = head (allqueens n)



Queens ...

n :: Int

n = ..

extend l = [(x:l) | x <- [1..n], compat x l]

compat x [] = True

compat x l = not (elem x l) && (notdiag x l)

extendall l = concatMap extend l

allqueens = head (drop n (iterate extendall [[]]))

queens = head allqueens


