
Introduction to Programming: Lecture 18

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

17 Oct 2013

http://www.cmi.ac.in/~kumar


Compiling into executables

I So far,
I All inputs were supplied as arguments to functions from ghci
I Outputs were printed out by ghci

I Works as long as programs are run from within an interpreter.

I What if we want to compile programs into executables?

I The Haskell programs described so far cannot be compiled
into executables.

I For eg. they don’t specify what function has to be computed.



Compiling into executables

I So far,
I All inputs were supplied as arguments to functions from ghci
I Outputs were printed out by ghci

I Works as long as programs are run from within an interpreter.

I What if we want to compile programs into executables?

I The Haskell programs described so far cannot be compiled
into executables.

I For eg. they don’t specify what function has to be computed.



Compiling into executables

I So far,
I All inputs were supplied as arguments to functions from ghci
I Outputs were printed out by ghci

I Works as long as programs are run from within an interpreter.

I What if we want to compile programs into executables?

I The Haskell programs described so far cannot be compiled
into executables.

I For eg. they don’t specify what function has to be computed.



Compiling into executables

I So far,
I All inputs were supplied as arguments to functions from ghci
I Outputs were printed out by ghci

I Works as long as programs are run from within an interpreter.

I What if we want to compile programs into executables?

I The Haskell programs described so far cannot be compiled
into executables.

I For eg. they don’t specify what function has to be computed.



Compiling into executables

I So far,
I All inputs were supplied as arguments to functions from ghci
I Outputs were printed out by ghci

I Works as long as programs are run from within an interpreter.

I What if we want to compile programs into executables?

I The Haskell programs described so far cannot be compiled
into executables.

I For eg. they don’t specify what function has to be computed.



Compiling ...

I Consider the Haskell program

main = putStrLn ("My First Compilable Program")

I Compile the program using ghc

ghc –make Out.hs

I Computes all the module dependencies and compiles all the
modules.

I Run by executing the program Out

I How do we give inputs to a Haskell program that is compiled
and executed?



Compiling ...

I Consider the Haskell program

main = putStrLn ("My First Compilable Program")

I Compile the program using ghc

ghc –make Out.hs

I Computes all the module dependencies and compiles all the
modules.

I Run by executing the program Out

I How do we give inputs to a Haskell program that is compiled
and executed?



Compiling ...

I Consider the Haskell program

main = putStrLn ("My First Compilable Program")

I Compile the program using ghc

ghc –make Out.hs

I Computes all the module dependencies and compiles all the
modules.

I Run by executing the program Out

I How do we give inputs to a Haskell program that is compiled
and executed?



Compiling ...

I Consider the Haskell program

main = putStrLn ("My First Compilable Program")

I Compile the program using ghc

ghc –make Out.hs

I Computes all the module dependencies and compiles all the
modules.

I Run by executing the program Out

I How do we give inputs to a Haskell program that is compiled
and executed?



Compiling ...

I Consider the Haskell program

main = putStrLn ("My First Compilable Program")

I Compile the program using ghc

ghc –make Out.hs

I Computes all the module dependencies and compiles all the
modules.

I Run by executing the program Out

I How do we give inputs to a Haskell program that is compiled
and executed?



Input/Output in Haskell

I Here is a simple program that does both input and output.

main = do

putStrLn ("Please enter your name:")

name <- getLine

putStrLn ("Hello " ++ name)

I main is the name of the action that is executed when a
compiled Haskell program is run.

I main, putStrLn s, getLine are all actions.

I The do command puts together a sequence of actions into a
larger action.

I These actions are executed sequentially, that is, one after the
other.



Input/Output in Haskell

I Here is a simple program that does both input and output.

main = do

putStrLn ("Please enter your name:")

name <- getLine

putStrLn ("Hello " ++ name)

I main is the name of the action that is executed when a
compiled Haskell program is run.

I main, putStrLn s, getLine are all actions.

I The do command puts together a sequence of actions into a
larger action.

I These actions are executed sequentially, that is, one after the
other.



Input/Output in Haskell

I Here is a simple program that does both input and output.

main = do

putStrLn ("Please enter your name:")

name <- getLine

putStrLn ("Hello " ++ name)

I main is the name of the action that is executed when a
compiled Haskell program is run.

I main, putStrLn s, getLine are all actions.

I The do command puts together a sequence of actions into a
larger action.

I These actions are executed sequentially, that is, one after the
other.



Input/Output in Haskell

I Here is a simple program that does both input and output.

main = do

putStrLn ("Please enter your name:")

name <- getLine

putStrLn ("Hello " ++ name)

I main is the name of the action that is executed when a
compiled Haskell program is run.

I main, putStrLn s, getLine are all actions.

I The do command puts together a sequence of actions into a
larger action.

I These actions are executed sequentially, that is, one after the
other.



Input/Output in Haskell

I Here is a simple program that does both input and output.

main = do

putStrLn ("Please enter your name:")

name <- getLine

putStrLn ("Hello " ++ name)

I main is the name of the action that is executed when a
compiled Haskell program is run.

I main, putStrLn s, getLine are all actions.

I The do command puts together a sequence of actions into a
larger action.

I These actions are executed sequentially, that is, one after the
other.



The type of Actions

I What is the type of main in this example?

main : IO ()

I The type () is the type with a single value, also denoted ().

I What are the types of putStrLn and getLine ?

putStrLn :: String -> IO ()

getLine :: IO String

I The qualifier IO in all these types indicate that the function
also performs some Input/Output.

I The type of a do .. statement is the type of the last action.

The type of an action v <- e is the type of e.



The type of Actions

I What is the type of main in this example?

main : IO ()

I The type () is the type with a single value, also denoted ().

I What are the types of putStrLn and getLine ?

putStrLn :: String -> IO ()

getLine :: IO String

I The qualifier IO in all these types indicate that the function
also performs some Input/Output.

I The type of a do .. statement is the type of the last action.

The type of an action v <- e is the type of e.



The type of Actions

I What is the type of main in this example?

main : IO ()

I The type () is the type with a single value, also denoted ().

I What are the types of putStrLn and getLine ?

putStrLn :: String -> IO ()

getLine :: IO String

I The qualifier IO in all these types indicate that the function
also performs some Input/Output.

I The type of a do .. statement is the type of the last action.

The type of an action v <- e is the type of e.



The type of Actions

I What is the type of main in this example?

main : IO ()

I The type () is the type with a single value, also denoted ().

I What are the types of putStrLn and getLine ?

putStrLn :: String -> IO ()

getLine :: IO String

I The qualifier IO in all these types indicate that the function
also performs some Input/Output.

I The type of a do .. statement is the type of the last action.

The type of an action v <- e is the type of e.



The type of Actions

I What is the type of main in this example?

main : IO ()

I The type () is the type with a single value, also denoted ().

I What are the types of putStrLn and getLine ?

putStrLn :: String -> IO ()

getLine :: IO String

I The qualifier IO in all these types indicate that the function
also performs some Input/Output.

I The type of a do .. statement is the type of the last action.

The type of an action v <- e is the type of e.



The type of Actions

I What is the type of main in this example?

main : IO ()

I The type () is the type with a single value, also denoted ().

I What are the types of putStrLn and getLine ?

putStrLn :: String -> IO ()

getLine :: IO String

I The qualifier IO in all these types indicate that the function
also performs some Input/Output.

I The type of a do .. statement is the type of the last action.

The type of an action v <- e is the type of e.



The type of Actions

I What is the type of main in this example?

main : IO ()

I The type () is the type with a single value, also denoted ().

I What are the types of putStrLn and getLine ?

putStrLn :: String -> IO ()

getLine :: IO String

I The qualifier IO in all these types indicate that the function
also performs some Input/Output.

I The type of a do .. statement is the type of the last action.

The type of an action v <- e is the type of e.



Actions

I An action is an expression of type IO a for some a.

main, putStrLn s and getLine are all actions.

I In Haskell, any Input/Output must occur within expressions of
type IO a for some a.

I Actions are first class values and for most part can be used
like other normal values.

alist = map putStrLn ["one","two","three"]

c = head alist

I As expected, we have

alist :: [IO ()]

c :: IO ()



Actions

I An action is an expression of type IO a for some a.

main, putStrLn s and getLine are all actions.

I In Haskell, any Input/Output must occur within expressions of
type IO a for some a.

I Actions are first class values and for most part can be used
like other normal values.

alist = map putStrLn ["one","two","three"]

c = head alist

I As expected, we have

alist :: [IO ()]

c :: IO ()



Actions

I An action is an expression of type IO a for some a.

main, putStrLn s and getLine are all actions.

I In Haskell, any Input/Output must occur within expressions of
type IO a for some a.

I Actions are first class values and for most part can be used
like other normal values.

alist = map putStrLn ["one","two","three"]

c = head alist

I As expected, we have

alist :: [IO ()]

c :: IO ()



Actions

I An action is an expression of type IO a for some a.

main, putStrLn s and getLine are all actions.

I In Haskell, any Input/Output must occur within expressions of
type IO a for some a.

I Actions are first class values and for most part can be used
like other normal values.

alist = map putStrLn ["one","two","three"]

c = head alist

I As expected, we have

alist :: [IO ()]

c :: IO ()



Actions

I An action is an expression of type IO a for some a.

main, putStrLn s and getLine are all actions.

I In Haskell, any Input/Output must occur within expressions of
type IO a for some a.

I Actions are first class values and for most part can be used
like other normal values.

alist = map putStrLn ["one","two","three"]

c = head alist

I As expected, we have

alist :: [IO ()]

c :: IO ()



I/O ...

I A function with an integer for an argument and returning an
integer has type
Int -> Int

while one that also does some IO has type
(Int -> IO Int)

What is the need for such a distinction?

I The kind of Haskell functions we have so far seen in this
course are called pure functions.

Their type gives all the information we need about them.

I For functions that also do IO, the types of the arguments and
the return value by themselves do not reveal everything.

I Input/Output involves changing the outside world.
state change

I I/O Actions have to be composed sequentially, that is, the
order of execution is critical.
(eg.) Reading in different orders will result in different
behaviours.



I/O ...

I A function with an integer for an argument and returning an
integer has type
Int -> Int

while one that also does some IO has type
(Int -> IO Int)

What is the need for such a distinction?

I The kind of Haskell functions we have so far seen in this
course are called pure functions.

Their type gives all the information we need about them.

I For functions that also do IO, the types of the arguments and
the return value by themselves do not reveal everything.

I Input/Output involves changing the outside world.
state change

I I/O Actions have to be composed sequentially, that is, the
order of execution is critical.
(eg.) Reading in different orders will result in different
behaviours.



I/O ...

I A function with an integer for an argument and returning an
integer has type
Int -> Int

while one that also does some IO has type
(Int -> IO Int)

What is the need for such a distinction?

I The kind of Haskell functions we have so far seen in this
course are called pure functions.

Their type gives all the information we need about them.

I For functions that also do IO, the types of the arguments and
the return value by themselves do not reveal everything.

I Input/Output involves changing the outside world.
state change

I I/O Actions have to be composed sequentially, that is, the
order of execution is critical.
(eg.) Reading in different orders will result in different
behaviours.



I/O ...

I A function with an integer for an argument and returning an
integer has type
Int -> Int

while one that also does some IO has type
(Int -> IO Int)

What is the need for such a distinction?

I The kind of Haskell functions we have so far seen in this
course are called pure functions.

Their type gives all the information we need about them.

I For functions that also do IO, the types of the arguments and
the return value by themselves do not reveal everything.

I Input/Output involves changing the outside world.
state change

I I/O Actions have to be composed sequentially, that is, the
order of execution is critical.
(eg.) Reading in different orders will result in different
behaviours.



I/O ...

I A function with an integer for an argument and returning an
integer has type
Int -> Int

while one that also does some IO has type
(Int -> IO Int)

What is the need for such a distinction?

I The kind of Haskell functions we have so far seen in this
course are called pure functions.

Their type gives all the information we need about them.

I For functions that also do IO, the types of the arguments and
the return value by themselves do not reveal everything.

I Input/Output involves changing the outside world.
state change

I I/O Actions have to be composed sequentially, that is, the
order of execution is critical.
(eg.) Reading in different orders will result in different
behaviours.



I/O ...

I A function with an integer for an argument and returning an
integer has type
Int -> Int

while one that also does some IO has type
(Int -> IO Int)

What is the need for such a distinction?

I The kind of Haskell functions we have so far seen in this
course are called pure functions.

Their type gives all the information we need about them.

I For functions that also do IO, the types of the arguments and
the return value by themselves do not reveal everything.

I Input/Output involves changing the outside world.
state change

I I/O Actions have to be composed sequentially, that is, the
order of execution is critical.

(eg.) Reading in different orders will result in different
behaviours.



I/O ...

I A function with an integer for an argument and returning an
integer has type
Int -> Int

while one that also does some IO has type
(Int -> IO Int)

What is the need for such a distinction?

I The kind of Haskell functions we have so far seen in this
course are called pure functions.

Their type gives all the information we need about them.

I For functions that also do IO, the types of the arguments and
the return value by themselves do not reveal everything.

I Input/Output involves changing the outside world.
state change

I I/O Actions have to be composed sequentially, that is, the
order of execution is critical.
(eg.) Reading in different orders will result in different
behaviours.



Combining Pure and IO functions

I Haskell type system allows us use pure and action parts in a
safe manner.

I There is no mechanism to execute an action from within a
pure function.

I I/O is performed by an action only if it that action is
performed, i.e. executed from within another action.

The main action is where all the action begins!



Combining Pure and IO functions

I Haskell type system allows us use pure and action parts in a
safe manner.

I There is no mechanism to execute an action from within a
pure function.

I I/O is performed by an action only if it that action is
performed, i.e. executed from within another action.

The main action is where all the action begins!



Combining Pure and IO functions

I Haskell type system allows us use pure and action parts in a
safe manner.

I There is no mechanism to execute an action from within a
pure function.

I I/O is performed by an action only if it that action is
performed, i.e. executed from within another action.

The main action is where all the action begins!



Combining Pure and IO functions

I Haskell type system allows us use pure and action parts in a
safe manner.

I There is no mechanism to execute an action from within a
pure function.

I I/O is performed by an action only if it that action is
performed, i.e. executed from within another action.

The main action is where all the action begins!



I/O Examples ...

I Read a line and print it out twice

main = do

inp <- getLine

putStrLn inp;

putStrLn inp;

I Read a line and print it out as many times as its length

main = do

inp <- getLine

ltimes (length inp) inp

ltimes :: Int -> String -> IO ()

ltimes 1 l = putStrLn l

ltimes n l = do

putStrLn l

ltimes (n-1) l



I/O Examples ...

I Read a line and print it out twice

main = do

inp <- getLine

putStrLn inp;

putStrLn inp;

I Read a line and print it out as many times as its length

main = do

inp <- getLine

ltimes (length inp) inp

ltimes :: Int -> String -> IO ()

ltimes 1 l = putStrLn l

ltimes n l = do

putStrLn l

ltimes (n-1) l



I/O Examples ...

I Read a line and print it out twice

main = do

inp <- getLine

putStrLn inp;

putStrLn inp;

I Read a line and print it out as many times as its length

main = do

inp <- getLine

ltimes (length inp) inp

ltimes :: Int -> String -> IO ()

ltimes 1 l = putStrLn l

ltimes n l = do

putStrLn l

ltimes (n-1) l



I/O Examples ...

I Read a line and print it out twice

main = do

inp <- getLine

putStrLn inp;

putStrLn inp;

I Read a line and print it out as many times as its length

main = do

inp <- getLine

ltimes (length inp) inp

ltimes :: Int -> String -> IO ()

ltimes 1 l = putStrLn l

ltimes n l = do

putStrLn l

ltimes (n-1) l



Example ...

I Read a line w. Read and output as many lines as length of w.

main = do

linp <- getLine

ltimesrw (length linp)

ltimesrw :: Int -> IO ()

ltimesrw 1 = do

inp <- getLine

putStrLn inp

ltimesrw n = do

inp <- getLine

putStrLn inp

ltimesrw (n-1)

I Suggests that we should write a function to do an action n
times.



Example ...

I Read a line w. Read and output as many lines as length of w.

main = do

linp <- getLine

ltimesrw (length linp)

ltimesrw :: Int -> IO ()

ltimesrw 1 = do

inp <- getLine

putStrLn inp

ltimesrw n = do

inp <- getLine

putStrLn inp

ltimesrw (n-1)

I Suggests that we should write a function to do an action n
times.



Example ...

I Read a line w. Read and output as many lines as length of w.

main = do

linp <- getLine

ltimesrw (length linp)

ltimesrw :: Int -> IO ()

ltimesrw 1 = do

inp <- getLine

putStrLn inp

ltimesrw n = do

inp <- getLine

putStrLn inp

ltimesrw (n-1)

I Suggests that we should write a function to do an action n
times.



ntimes

I Repeat an action n times.
ntimes :: Int -> IO () -> IO ()

ntimes 1 s = s

ntimes n s = do

s

ntimes (n-1) s

I Then we can write
action1 = do

inp <- getLine

ntimes (length inp)

(putStrLn inp)

I and
action2 = do

linp <- getLine

ntimes (length linp)

(do

inp <- getLine

putStrLn inp)



ntimes

I Repeat an action n times.
ntimes :: Int -> IO () -> IO ()

ntimes 1 s = s

ntimes n s = do

s

ntimes (n-1) s
I Then we can write

action1 = do

inp <- getLine

ntimes (length inp)

(putStrLn inp)

I and
action2 = do

linp <- getLine

ntimes (length linp)

(do

inp <- getLine

putStrLn inp)



ntimes

I Repeat an action n times.
ntimes :: Int -> IO () -> IO ()

ntimes 1 s = s

ntimes n s = do

s

ntimes (n-1) s
I Then we can write

action1 = do

inp <- getLine

ntimes (length inp)

(putStrLn inp)

I and
action2 = do

linp <- getLine

ntimes (length linp)

(do

inp <- getLine

putStrLn inp)



Reading other types

I The function readLn reads a value of any type a that is an
instance of Read a

readLn :: (Read a) => IO a

I All basic types (Int, Float, Bool, ...) are instances of
Read.

main = do

inp <- (readLn :: IO Bool)

putStrLn (show inp)

I readLn reads a value of the appropriate type appearing by
itself in a line.

main = do

inp <- (readLn :: IO Float)

putStrLn (show (inp*inp))



Reading other types

I The function readLn reads a value of any type a that is an
instance of Read a

readLn :: (Read a) => IO a

I All basic types (Int, Float, Bool, ...) are instances of
Read.

main = do

inp <- (readLn :: IO Bool)

putStrLn (show inp)

I readLn reads a value of the appropriate type appearing by
itself in a line.

main = do

inp <- (readLn :: IO Float)

putStrLn (show (inp*inp))



Reading other types

I The function readLn reads a value of any type a that is an
instance of Read a

readLn :: (Read a) => IO a

I All basic types (Int, Float, Bool, ...) are instances of
Read.

main = do

inp <- (readLn :: IO Bool)

putStrLn (show inp)

I readLn reads a value of the appropriate type appearing by
itself in a line.

main = do

inp <- (readLn :: IO Float)

putStrLn (show (inp*inp))



Reading other types

I The function readLn reads a value of any type a that is an
instance of Read a

readLn :: (Read a) => IO a

I All basic types (Int, Float, Bool, ...) are instances of
Read.

main = do

inp <- (readLn :: IO Bool)

putStrLn (show inp)

I readLn reads a value of the appropriate type appearing by
itself in a line.

main = do

inp <- (readLn :: IO Float)

putStrLn (show (inp*inp))



Reading other types

I The function readLn reads a value of any type a that is an
instance of Read a

readLn :: (Read a) => IO a

I All basic types (Int, Float, Bool, ...) are instances of
Read.

main = do

inp <- (readLn :: IO Bool)

putStrLn (show inp)

I readLn reads a value of the appropriate type appearing by
itself in a line.

main = do

inp <- (readLn :: IO Float)

putStrLn (show (inp*inp))



IO Examples

I Read a list of positive integers, terminated by a -1, into a
list and print the sum.

main = do

ls <- (readlist [])

putStrLn (sum ls)

readlist :: [Int] -> IO [Int]

readlist l = do

inp <- (readLn :: IO Int)

if (inp == -1)

then l

else readlist (inp:l)

I This is not typed correctly. l has type [Int] and not IO
[Int].



IO Examples

I Read a list of positive integers, terminated by a -1, into a
list and print the sum.

main = do

ls <- (readlist [])

putStrLn (sum ls)

readlist :: [Int] -> IO [Int]

readlist l = do

inp <- (readLn :: IO Int)

if (inp == -1)

then l

else readlist (inp:l)

I This is not typed correctly. l has type [Int] and not IO
[Int].



IO Examples

I Read a list of positive integers, terminated by a -1, into a
list and print the sum.

main = do

ls <- (readlist [])

putStrLn (sum ls)

readlist :: [Int] -> IO [Int]

readlist l = do

inp <- (readLn :: IO Int)

if (inp == -1)

then l

else readlist (inp:l)

I This is not typed correctly. l has type [Int] and not IO
[Int].



IO Examples

I Read a list of positive integers, terminated by a -1, into a
list and print the sum.

main = do

ls <- (readlist [])

putStrLn (sum ls)

readlist :: [Int] -> IO [Int]

readlist l = do

inp <- (readLn :: IO Int)

if (inp == -1)

then l

else readlist (inp:l)

I This is not typed correctly. l has type [Int] and not IO
[Int].



Example ...

readlist :: [Int] -> IO [Int]

readlist l = do

inp <- (readLn :: IO Int)

if (inp == -1)

then (return l)

else readlist (inp:l)

I The function return sends value of type a to a value of type
IO a

I Note that there is no obvious way to construct a useful
function of type IO a -> b where b is not an action.

This is towards a clean separation of the pure fragments of
the program (that do no I/O) and the IO parts.



Example ...

readlist :: [Int] -> IO [Int]

readlist l = do

inp <- (readLn :: IO Int)

if (inp == -1)

then (return l)

else readlist (inp:l)

I The function return sends value of type a to a value of type
IO a

I Note that there is no obvious way to construct a useful
function of type IO a -> b where b is not an action.

This is towards a clean separation of the pure fragments of
the program (that do no I/O) and the IO parts.



Example ...

readlist :: [Int] -> IO [Int]

readlist l = do

inp <- (readLn :: IO Int)

if (inp == -1)

then (return l)

else readlist (inp:l)

I The function return sends value of type a to a value of type
IO a

I Note that there is no obvious way to construct a useful
function of type IO a -> b where b is not an action.

This is towards a clean separation of the pure fragments of
the program (that do no I/O) and the IO parts.



Example ...

readlist :: [Int] -> IO [Int]

readlist l = do

inp <- (readLn :: IO Int)

if (inp == -1)

then (return l)

else readlist (inp:l)

I The function return sends value of type a to a value of type
IO a

I Note that there is no obvious way to construct a useful
function of type IO a -> b where b is not an action.

This is towards a clean separation of the pure fragments of
the program (that do no I/O) and the IO parts.


