Introduction to Programming: Lecture 2

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

08 August 2013

http://www.cmi.ac.in/~kumar

Functions with multiple inputs . ..

» Consider a function with many arguments
fx1x2 ...xn=y

Functions with multiple inputs . ..

» Consider a function with many arguments
fx1x2 ...xn=y
» Suppose each input xi is of type Int

» Suppose Output v is of type Bool
» Type of £ is

Functions with multiple inputs . ..

» Consider a function with many arguments
fx1x2 ...xn=y
» Suppose each input xi is of type Int

» Suppose Output v is of type Bool
» Type of £ is

f::Int -> (Int -> (...(Int -> Bool)

)

Functions with multiple inputs . ..

» Consider a function with many arguments
fx1x2 ...xn=y
» Suppose each input xi is of type Int

» Suppose Output v is of type Bool
» Type of £ is

f::Int -> (Int -> (...(Int -> Bool)
» For convenience, we are allowed to write

» £ x1 x2 ...xn
to mean
(...((f x1) x2) ...xn)

)

Functions with multiple inputs . ..

» Consider a function with many arguments
fx1x2 ...xn=y
» Suppose each input xi is of type Int

» Suppose Output v is of type Bool
» Type of £ is

f::Int -> (Int -=> (...(Int -> Bool) ...))

» For convenience, we are allowed to write

» £ x1 x2 ...xn
to mean
(...((f x1) x2) ...xn)

» £ :: Int -> Int -> ...Int -> Bool
to mean

f :: Int -> (Int -> (...(Int -> Bool) ...))

Functions with multiple inputs . ..

» Consider a function with many arguments
fx1x2 ...xn=y
» Suppose each input xi is of type Int

» Suppose Output v is of type Bool
» Type of £ is

f::Int -> (Int -=> (...(Int -> Bool) ...))

» For convenience, we are allowed to write

» £ x1 x2 ...xn
to mean
(...((f x1) x2) ...xn)
» £ :: Int -> Int -> ...Int -> Bool
to mean
f :: Int -> (Int -> (...(Int -> Bool) ...))

» This works for any combination of input and output types

Functions in Haskell

» Pattern Matching
factorial :: Int -> Int
factorial 0 = 1
n * (factorial (n-1))

factorial n

Functions in Haskell

» Pattern Matching

factorial :: Int -> Int

factorial 0 = 1
n * (factorial (n-1))
» Conditional definitions

factorial :: Int -> Int

factorial 0 = 1

n

factorial n

factorial
| n < 0 = factorial (-n)
| n >0 =n % (factorial (n-1))

Functions in Haskell

» Pattern Matching

factorial :: Int -> Int
factorial O 1
factorial n = n * (factorial (n-1))

» Conditional definitions
factorial :: Int -> Int
factorial 0 = 1
factorial n
| n < 0 = factorial (-n)
| n >0 =n * (factorial (n-1))

> Using otherwise

xor :: Bool -> Bool -> Bool
xor bl b2

| bl && not(b2) = True

| not(bl) && b2 = True

| otherwise = False

Functions in Haskell

» Wild Cards.
:: Bool
or True _

or

or _

or

True

-> Bool

True
True
False

-> Bool

Functions in Haskell

» Wild Cards.
or :: Bool -> Bool -> Bool
or True _ = True
or _ True = True
or = False

> _ matches anything, but cannot be used in the righthand side.

Functions in Haskell

» Wild Cards.
or :: Bool -> Bool -> Bool
or True _ = True
or _ True = True
or = False

» _matches anything, but cannot be used in the righthand side.

or :: Bool -> Bool -> Bool
or False x = x

or x False = x

or = True

Computation as rewriting

> Use definitions to simplify expressions till no further
simplification is possible

Computation as rewriting

> Use definitions to simplify expressions till no further
simplification is possible
» Builtin simplifications
» 3 +5~8
» True || False ~» True

Computation as rewriting

> Use definitions to simplify expressions till no further
simplification is possible
» Builtin simplifications
» 3 +5~8

» True || False ~» True

» Simplifications based on user defined functions

Computation as rewriting

» Use definitions to simplify expressions till no further
simplification is possible
» Builtin simplifications
» 3 +5~8
» True || False ~» True
» Simplifications based on user defined functions
power :: Int -> Int -> Int
power x 0 =1
power x n = x * (power x (n-1))

Computation as rewriting

v

Use definitions to simplify expressions till no further
simplification is possible

v

Builtin simplifications
» 3+ 5~ 8
» True || False ~» True

v

Simplifications based on user defined functions
power :: Int -> Int -> Int
power x 0 = 1
power x n = x * (power x (n-1))

» power 3 2

~ 3 * (power 3 (2-1))

~ 3 * (power 3 1)

~ 3 * (3 * (power 3 (1-1)))
~» 3 * (3 * (power 3 0))

~ 3 * (3 *% 1)

~ 3 * 3~ 9

Examples

» A function to calculate the gcd of two given numbers:

Examples

» A function to calculate the gcd of two given numbers:

mygcd:: Int -> Int -> Int
mygcd x 0 = x
mygcd x n
| (x <= n) = myged x (n-x)
| otherwise = mygcd n x

Largest Divisor

» A function to determine the largest divisor (other than itself)
of a given number.

Largest Divisor

» A function to determine the largest divisor (other than itself)
of a given number.

largediv :: Int -> Int
largediv n = divaux n (n-1)

divaux :: Int -> Int -> Int
divaux i j
| (mod i j ==0) = j
| otherwise = divaux i (j-1)

Example: Approximating the logarithm

» log, n is the number of times we can divide n by k before we
reach 1

Example: Approximating the logarithm

» log, n is the number of times we can divide n by k before we
reach 1

> Integer approximation: number of times we can divide n by k
without going strictly below 1

Example: Approximating the logarithm

» log, n is the number of times we can divide n by k before we
reach 1

> Integer approximation: number of times we can divide n by k
without going strictly below 1

> log, 30 ~ 4 because ; > 1 but ;—8 <1

Example: Approximating the logarithm

» log, n is the number of times we can divide n by k before we
reach 1

> Integer approximation: number of times we can divide n by k
without going strictly below 1

> log, 30 ~ 4 because ; > 1 but ;—8 <1

» Keep dividing n by k till we reach 1

Example: Approximating the logarithm

» log, n is the number of times we can divide n by k before we
reach 1

> Integer approximation: number of times we can divide n by k
without going strictly below 1

> log, 30 ~ 4 because ; > 1 but ;—g <1

» Keep dividing n by k till we reach 1
mylog :: Int -> Int -> Int

mylog k 1 =0
mylog k n = 1 + (mylog k (div n k))

Example: Approximating the logarithm

> log, n is the number of times we can divide n by k before we
reach 1

> Integer approximation: number of times we can divide n by k
without going strictly below 1

30 30
> log, 30 = 4 because o > 1 but > <1
» Keep dividing n by k till we reach 1
mylog :: Int -> Int -> Int
mylog k 1 =0
mylog k n = 1 + (mylog k (div n k))
Oops!

Example: Approximating the logarithm

> log, n is the number of times we can divide n by k before we
reach 1

> Integer approximation: number of times we can divide n by k
without going strictly below 1

> log, 30 = 4 because g > 1 but ;—8 <1

» Keep dividing n by k till we reach 1, or go below 1!

mylog :: Int -> Int -> Int

mylog k 1 =0

mylog k n
| n >=k 1 + (mylog k (div n k))
| otherwise =0

Example: Reversing the digits in an integer

» intreverse 13276 ~ 67231

Example: Reversing the digits in an integer

» intreverse 13276 ~ 67231
> Strategy

» Split 13276 as 1327 and 6 using div 13276 10 and
mod 13276 10

Example: Reversing the digits in an integer

» intreverse 13276 ~ 67231
> Strategy

» Split 13276 as 1327 and 6 using div 13276 10 and
mod 13276 10

» Recursively reverse 1327

Example: Reversing the digits in an integer

» intreverse 13276 ~ 67231
> Strategy

» Split 13276 as 1327 and 6 using div 13276 10 and
mod 13276 10

» Recursively reverse 1327

» Multiply 6 by appropriate power of 10 and add

Example: Reversing the digits in an integer

» intreverse 13276 ~ 67231
> Strategy

» Split 13276 as 1327 and 6 using div 13276 10 and
mod 13276 10

» Recursively reverse 1327

» Multiply 6 by appropriate power of 10 and add

» Use mylog to decide the power of 10 to use

Example: Reversing the digits in an integer

» intreverse 13276 ~ 67231
> Strategy

» Split 13276 as 1327 and 6 using div 13276 10 and
mod 13276 10

» Recursively reverse 1327

» Multiply 6 by appropriate power of 10 and add

» Use mylog to decide the power of 10 to use

intreverse :: Int -> Int
intreverse n

| n < 10 =n

| otherwise

(intreverse (div n 10)) +
(mod n 10)*(power 10 (mylog 10 n))

Lists

» To describe a collection of values in Haskell, use a list

» [1,2,3,1] is a list of Int
» [True,False,True] is a list of Bool

Lists

» To describe a collection of values in Haskell, use a list

» [1,2,3,1] is a list of Int
» [True,False,True] is a list of Bool

» Elements of a list must all be of one type

» Cannot write [1,2,True] or [3,’2a’]

Lists

» To describe a collection of values in Haskell, use a list
» [1,2,3,1] is a list of Int
» [True,False,True] is a list of Bool
» Elements of a list must all be of one type
» Cannot write [1,2,True] or [3,’2a’]
» List of underlying type T has type [T]
» [1,2,3,1]::[Int]
» [True,False,True]:: [Booll
» Empty list is [] for all types

Lists

» To describe a collection of values in Haskell, use a list

» [1,2,3,1] is a list of Int
» [True,False,True] is a list of Bool

» Elements of a list must all be of one type
» Cannot write [1,2,True] or [3,’2a’]
» List of underlying type T has type [T]
» [1,2,3,1]::[Int]
» [True,False,True]:: [Booll
» Empty list is [] for all types
> Lists can be nested

» [[3,2],01,[7,7,71] is of type [[Int]]

Internal representation on lists

» Basic list building operator is :

» Append an element to the left of a list
» 1:[2,3,4] ~ [1,2,3,4]

Internal representation on lists

» Basic list building operator is :

» Append an element to the left of a list
» 1:[2,3,4] ~ [1,2,3,4]

» All Haskell lists are built up from [] using operator :

» [1,2,3,4] isactually 1:(2:(3:(4:[1)))
» : is right associative, so 1:2:3:4:[] = 1:(2:(3:(4:[1)))

Internal representation on lists

» Basic list building operator is :

» Append an element to the left of a list

» 1:[2,3,4] ~ [1,2,3,4]
» All Haskell lists are built up from [] using operator :

» [1,2,3,4] isactually 1:(2:(3:(4:[1)))

> : is right associative, so 1:2:3:4:[] = 1:(2:(3:(4:[])))
» Functions head and tail to decompose a list

head (x:1) X
tail (x:1) =1
Undefined for []
head returns a value, tail returns a list

vV vy vy

Defining list functions inductively

» Natural numbers are built up from 0 using succ n
» Define £ 0 explicitly and give a rule to compute £ (succ n)
by combining n and £ n

Defining list functions inductively

» Natural numbers are built up from 0 using succ n
» Define £ 0 explicitly and give a rule to compute £ (succ n)
by combining n and £ n

v

Lists are built up from [] using :
Define £ for []
Compute £ 1 by combining head 1 and £ (tail 1)

v

v

Defining list functions inductively

» Natural numbers are built up from 0 using succ n
» Define £ 0 explicitly and give a rule to compute £ (succ n)
by combining n and £ n

v

Lists are built up from [] using :
Define £ for []
Compute £ 1 by combining head 1 and £ (tail 1)

v

v

mylength :: [Int] -> Int

Defining list functions inductively

» Natural numbers are built up from 0 using succ n
» Define £ 0 explicitly and give a rule to compute £ (succ n)
by combining n and £ n

v

Lists are built up from [] using :
Define £ for []
Compute £ 1 by combining head 1 and £ (tail 1)

v Yy

mylength :: [Int] -> Int

0
1 + (mylength (tail 1))

mylength []
mylength 1

Defining list functions inductively

» Natural numbers are built up from 0 using succ n
» Define £ 0 explicitly and give a rule to compute £ (succ n)
by combining n and £ n

v

Lists are built up from [] using :
Define £ for []
Compute £ 1 by combining head 1 and £ (tail 1)

v Yy

mylength :: [Int] -> Int

0
1 + (mylength (tail 1))

mylength []
mylength 1

mysum :: [Int] -> Int

Defining list functions inductively

» Natural numbers are built up from 0 using succ n
» Define £ 0 explicitly and give a rule to compute £ (succ n)
by combining n and £ n

v

Lists are built up from [] using :
Define £ for []
Compute £ 1 by combining head 1 and £ (tail 1)

v Yy

mylength :: [Int] -> Int

mylength [] = 0

mylength 1 = 1 + (mylength (tail 1))
mysum :: [Int] -> Int

mysum [] = 0

mysum 1 = (head 1) + (mysum (tail 1))

Functions on lists . ..

» Implicitly extract head and tail using pattern matching

[Int] -> Int

mylength ::
=0

mylength []

mylength (x:xs) = 1 + (mylength xs)

mysum :: [Int] -> Int

mysum [] =0

mysum (x:xs) = x + (mysum xs)

Functions on lists . ..

> Append to the right: appendright 1 [2,3] ~ [2,3,1]

Functions on lists . ..

> Append to the right: appendright 1 [2,3] ~ [2,3,1]

appendright :: Int -> [Int] -> [Int]
appendright x [] = [x]
appendright x (y:ys) = y:(appendright x ys)

Functions on lists . ..

> Append to the right: appendright 1 [2,3] ~ [2,3,1]

appendright :: Int -> [Int] -> [Int]

appendright x [] = [x]

appendright x (y:ys) = y:(appendright x ys)
» Combine two lists into one — append

» append [3,2] [4,6,7] ~[3,2,4,6,7]

Functions on lists . ..

> Append to the right: appendright 1 [2,3] ~ [2,3,1]
appendright

appendright x []

Int -> [Int] -> [Int]

= [x]

appendright x (y:ys) = y:(appendright x ys)
» Combine two lists into one — append

» append [3,2] [4,6,7] ~[3,2,4,6,7]
append :: [Int] -> [Int] -> [Int]
append [] ys = ys

append (x:xs) ys

x: (append xs ys)

Functions on lists . ..

> Append to the right: appendright 1 [2,3] ~ [2,3,1]

appendright :: Int -> [Int] -> [Int]

appendright x [] = [x]

appendright x (y:ys) = y:(appendright x ys)
» Combine two lists into one — append

» append [3,2] [4,6,7] ~[3,2,4,6,7]

append :: [Int] -> [Int] -> [Int]

append [] ys = ys

append (x:xs) ys = x:(append xs ys)
» Builtin operator ++ for append

» [1,2,3] ++ [4,3] ~ [1,2,3,4,3]

Functions on lists . ..

> Reversing a list

Functions on lists . ..

> Reversing a list

myreverse

myreverse [] = []
myreverse (x:xs) = (myreverse xs)++[x]

[Int] -> [Int]

Functions on lists . ..

> Reversing a list
myreverse [Int] -> [Int]
myreverse [] = []
myreverse (x:xs) = (myreverse xs)++[x]

» Check if a list of integers is sorted.

Functions on lists . ..

> Reversing a list

myreverse :: [Int] -> [Int]
myreverse [] = []
myreverse (x:xs) = (myreverse xs)++[x]
» Check if a list of integers is sorted.
ascending :: [Int] -> Bool
ascending [] = True

ascending [x] = True
ascending (x:y:ys)
| (x <= y)
| otherwise

ascending (y:ys)
False

Functions on Lists ...

» Check if a list of integers is alternating.

Functions on Lists ...

» Check if a list of integers is alternating.

alternating :: [Int] -> Bool
alternating 1 = (updown 1) || (downup 1)
updown :: [Int] -> Bool

updown [] = True

updown [x] = True

updown (x:y:ys) = (x < y) && (downup (y:ys))

downup :: [Int] -> Bool
downup [] = True

downup [x]
downup (x:y:ys) = (x > y) && (updown (y:ys))

True

u]
o)
I
i
it

Some built in functions on lists

» head, tail, length, sum, reverse, ...

Some built in functions on lists

» head, tail, length, sum, reverse, ...

» init 1 returns all but the last element of 1
init [1,2,3] ~ [1,2]
init [2] ~ []
» last 1 returns the last element in 1
last [1,2,3] ~ 3
last [2] ~ 2

Some built in functions on lists

» head,

> init
init
init
» last
last
last
» take

» drop

tail, length, sum, reverse, ...

1 returns all but the last element of 1
[1,2,3] ~ [1,2]
[2] ~ []

1 returns the last element in 1
[1,2,3] ~ 3
[2] ~ 2

n 1 returns first n values in 1

n 1 leaves out first n values in 1

1 == (take n 1) ++ (drop n 1)

Polymorphism

Consider the functions length, reverse, init,

mylength [] =0
mylength (x:xs) = 1 + mylength xs

Polymorphism

Consider the functions length, reverse, init,
mylength [] = 0
mylength (x:xs) = 1 + mylength xs

myreverse [] = []
myreverse (x:xs) = (myreverse xs) ++ [x]

Polymorphism

Consider the functions length, reverse, init,
mylength [] = 0
mylength (x:xs) = 1 + mylength xs
myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []
myinit (x:xs) = x:(myinit xs)

u]
o)
I

i
it

Polymorphism

Consider the functions length, reverse, init,

mylength [] =0
mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []
myinit (x:xs) = x:(myinit xs)

None of these functions look into the elements of the list.

Polymorphism

Consider the functions length, reverse, init,

mylength [] =0
mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []
myinit (x:xs) = x:(myinit xs)

None of these functions look into the elements of the list.

In Haskell, these functions will work over lists of any type!

Polymorphism

Consider the functions length, reverse, init,
mylength [] =0
mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]
myinit [x] = []

myinit (x:xs) = x:(myinit xs)

None of these functions look into the elements of the list.
In Haskell, these functions will work over lists of any type!

Polymorphic Functions

Polymorphism

Consider the functions length, reverse, init,
mylength [] =0
mylength (x:xs) = 1 + mylength xs

myreverse [] = []
myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []

myinit (x:xs) = x:(myinit xs)
None of these functions look into the elements of the list.
In Haskell, these functions will work over lists of any type!
Polymorphic Functions

mylength :: [a] -> Int

