
Introduction to Programming: Lecture 2

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

08 August 2013

http://www.cmi.ac.in/~kumar

Functions with multiple inputs . . .

I Consider a function with many arguments
f x1 x2 ...xn = y

I Suppose each input xi is of type Int
I Suppose Output y is of type Bool
I Type of f is

f::Int -> (Int -> (...(Int -> Bool) ...))

I For convenience, we are allowed to write

I f x1 x2 ...xn

to mean
(...((f x1) x2) ...xn)

I f :: Int -> Int -> ...Int -> Bool

to mean
f :: Int -> (Int -> (...(Int -> Bool) ...))

I This works for any combination of input and output types

Functions with multiple inputs . . .

I Consider a function with many arguments
f x1 x2 ...xn = y

I Suppose each input xi is of type Int
I Suppose Output y is of type Bool
I Type of f is

f::Int -> (Int -> (...(Int -> Bool) ...))

I For convenience, we are allowed to write

I f x1 x2 ...xn

to mean
(...((f x1) x2) ...xn)

I f :: Int -> Int -> ...Int -> Bool

to mean
f :: Int -> (Int -> (...(Int -> Bool) ...))

I This works for any combination of input and output types

Functions with multiple inputs . . .

I Consider a function with many arguments
f x1 x2 ...xn = y

I Suppose each input xi is of type Int
I Suppose Output y is of type Bool
I Type of f is

f::Int -> (Int -> (...(Int -> Bool) ...))

I For convenience, we are allowed to write

I f x1 x2 ...xn

to mean
(...((f x1) x2) ...xn)

I f :: Int -> Int -> ...Int -> Bool

to mean
f :: Int -> (Int -> (...(Int -> Bool) ...))

I This works for any combination of input and output types

Functions with multiple inputs . . .

I Consider a function with many arguments
f x1 x2 ...xn = y

I Suppose each input xi is of type Int
I Suppose Output y is of type Bool
I Type of f is

f::Int -> (Int -> (...(Int -> Bool) ...))

I For convenience, we are allowed to write

I f x1 x2 ...xn

to mean
(...((f x1) x2) ...xn)

I f :: Int -> Int -> ...Int -> Bool

to mean
f :: Int -> (Int -> (...(Int -> Bool) ...))

I This works for any combination of input and output types

Functions with multiple inputs . . .

I Consider a function with many arguments
f x1 x2 ...xn = y

I Suppose each input xi is of type Int
I Suppose Output y is of type Bool
I Type of f is

f::Int -> (Int -> (...(Int -> Bool) ...))

I For convenience, we are allowed to write

I f x1 x2 ...xn

to mean
(...((f x1) x2) ...xn)

I f :: Int -> Int -> ...Int -> Bool

to mean
f :: Int -> (Int -> (...(Int -> Bool) ...))

I This works for any combination of input and output types

Functions with multiple inputs . . .

I Consider a function with many arguments
f x1 x2 ...xn = y

I Suppose each input xi is of type Int
I Suppose Output y is of type Bool
I Type of f is

f::Int -> (Int -> (...(Int -> Bool) ...))

I For convenience, we are allowed to write

I f x1 x2 ...xn

to mean
(...((f x1) x2) ...xn)

I f :: Int -> Int -> ...Int -> Bool

to mean
f :: Int -> (Int -> (...(Int -> Bool) ...))

I This works for any combination of input and output types

Functions in Haskell

I Pattern Matching

factorial :: Int -> Int

factorial 0 = 1

factorial n = n * (factorial (n-1))

I Conditional definitions

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 0 = n * (factorial (n-1))

I Using otherwise

xor :: Bool -> Bool -> Bool

xor b1 b2

| b1 && not(b2) = True

| not(b1) && b2 = True

| otherwise = False

Functions in Haskell

I Pattern Matching

factorial :: Int -> Int

factorial 0 = 1

factorial n = n * (factorial (n-1))

I Conditional definitions

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 0 = n * (factorial (n-1))

I Using otherwise

xor :: Bool -> Bool -> Bool

xor b1 b2

| b1 && not(b2) = True

| not(b1) && b2 = True

| otherwise = False

Functions in Haskell

I Pattern Matching

factorial :: Int -> Int

factorial 0 = 1

factorial n = n * (factorial (n-1))

I Conditional definitions

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 0 = n * (factorial (n-1))

I Using otherwise

xor :: Bool -> Bool -> Bool

xor b1 b2

| b1 && not(b2) = True

| not(b1) && b2 = True

| otherwise = False

Functions in Haskell

I Wild Cards.

or :: Bool -> Bool -> Bool

or True _ = True

or _ True = True

or _ _ = False

I matches anything, but cannot be used in the righthand side.

or :: Bool -> Bool -> Bool

or False x = x

or x False = x

or _ _ = True

Functions in Haskell

I Wild Cards.

or :: Bool -> Bool -> Bool

or True _ = True

or _ True = True

or _ _ = False

I matches anything, but cannot be used in the righthand side.

or :: Bool -> Bool -> Bool

or False x = x

or x False = x

or _ _ = True

Functions in Haskell

I Wild Cards.

or :: Bool -> Bool -> Bool

or True _ = True

or _ True = True

or _ _ = False

I matches anything, but cannot be used in the righthand side.

or :: Bool -> Bool -> Bool

or False x = x

or x False = x

or _ _ = True

Computation as rewriting

I Use definitions to simplify expressions till no further
simplification is possible

I Builtin simplifications
I 3 + 5 ; 8
I True || False ; True

I Simplifications based on user defined functions

power :: Int -> Int -> Int

power x 0 = 1

power x n = x * (power x (n-1))

I power 3 2

; 3 * (power 3 (2-1))

; 3 * (power 3 1)

; 3 * (3 * (power 3 (1-1)))

; 3 * (3 * (power 3 0))

; 3 * (3 * 1)

; 3 * 3 ; 9

Computation as rewriting

I Use definitions to simplify expressions till no further
simplification is possible

I Builtin simplifications
I 3 + 5 ; 8
I True || False ; True

I Simplifications based on user defined functions

power :: Int -> Int -> Int

power x 0 = 1

power x n = x * (power x (n-1))

I power 3 2

; 3 * (power 3 (2-1))

; 3 * (power 3 1)

; 3 * (3 * (power 3 (1-1)))

; 3 * (3 * (power 3 0))

; 3 * (3 * 1)

; 3 * 3 ; 9

Computation as rewriting

I Use definitions to simplify expressions till no further
simplification is possible

I Builtin simplifications
I 3 + 5 ; 8
I True || False ; True

I Simplifications based on user defined functions

power :: Int -> Int -> Int

power x 0 = 1

power x n = x * (power x (n-1))

I power 3 2

; 3 * (power 3 (2-1))

; 3 * (power 3 1)

; 3 * (3 * (power 3 (1-1)))

; 3 * (3 * (power 3 0))

; 3 * (3 * 1)

; 3 * 3 ; 9

Computation as rewriting

I Use definitions to simplify expressions till no further
simplification is possible

I Builtin simplifications
I 3 + 5 ; 8
I True || False ; True

I Simplifications based on user defined functions

power :: Int -> Int -> Int

power x 0 = 1

power x n = x * (power x (n-1))

I power 3 2

; 3 * (power 3 (2-1))

; 3 * (power 3 1)

; 3 * (3 * (power 3 (1-1)))

; 3 * (3 * (power 3 0))

; 3 * (3 * 1)

; 3 * 3 ; 9

Computation as rewriting

I Use definitions to simplify expressions till no further
simplification is possible

I Builtin simplifications
I 3 + 5 ; 8
I True || False ; True

I Simplifications based on user defined functions

power :: Int -> Int -> Int

power x 0 = 1

power x n = x * (power x (n-1))

I power 3 2

; 3 * (power 3 (2-1))

; 3 * (power 3 1)

; 3 * (3 * (power 3 (1-1)))

; 3 * (3 * (power 3 0))

; 3 * (3 * 1)

; 3 * 3 ; 9

Examples

I A function to calculate the gcd of two given numbers:

mygcd:: Int -> Int -> Int

mygcd x 0 = x

mygcd x n

| (x <= n) = mygcd x (n-x)

| otherwise = mygcd n x

Examples

I A function to calculate the gcd of two given numbers:

mygcd:: Int -> Int -> Int

mygcd x 0 = x

mygcd x n

| (x <= n) = mygcd x (n-x)

| otherwise = mygcd n x

Largest Divisor

I A function to determine the largest divisor (other than itself)
of a given number.

largediv :: Int -> Int

largediv n = divaux n (n-1)

divaux :: Int -> Int -> Int

divaux i j

| (mod i j == 0) = j

| otherwise = divaux i (j-1)

Largest Divisor

I A function to determine the largest divisor (other than itself)
of a given number.

largediv :: Int -> Int

largediv n = divaux n (n-1)

divaux :: Int -> Int -> Int

divaux i j

| (mod i j == 0) = j

| otherwise = divaux i (j-1)

Example: Approximating the logarithm

I logk n is the number of times we can divide n by k before we
reach 1

I Integer approximation: number of times we can divide n by k
without going strictly below 1

I log2 30 ≈ 4 because
30

24
> 1 but

30

25
< 1

I Keep dividing n by k till we reach 1

mylog :: Int -> Int -> Int

mylog k 1 = 0

mylog k n = 1 + (mylog k (div n k))

Oops!

Example: Approximating the logarithm

I logk n is the number of times we can divide n by k before we
reach 1

I Integer approximation: number of times we can divide n by k
without going strictly below 1

I log2 30 ≈ 4 because
30

24
> 1 but

30

25
< 1

I Keep dividing n by k till we reach 1

mylog :: Int -> Int -> Int

mylog k 1 = 0

mylog k n = 1 + (mylog k (div n k))

Oops!

Example: Approximating the logarithm

I logk n is the number of times we can divide n by k before we
reach 1

I Integer approximation: number of times we can divide n by k
without going strictly below 1

I log2 30 ≈ 4 because
30

24
> 1 but

30

25
< 1

I Keep dividing n by k till we reach 1

mylog :: Int -> Int -> Int

mylog k 1 = 0

mylog k n = 1 + (mylog k (div n k))

Oops!

Example: Approximating the logarithm

I logk n is the number of times we can divide n by k before we
reach 1

I Integer approximation: number of times we can divide n by k
without going strictly below 1

I log2 30 ≈ 4 because
30

24
> 1 but

30

25
< 1

I Keep dividing n by k till we reach 1

mylog :: Int -> Int -> Int

mylog k 1 = 0

mylog k n = 1 + (mylog k (div n k))

Oops!

Example: Approximating the logarithm

I logk n is the number of times we can divide n by k before we
reach 1

I Integer approximation: number of times we can divide n by k
without going strictly below 1

I log2 30 ≈ 4 because
30

24
> 1 but

30

25
< 1

I Keep dividing n by k till we reach 1

mylog :: Int -> Int -> Int

mylog k 1 = 0

mylog k n = 1 + (mylog k (div n k))

Oops!

Example: Approximating the logarithm

I logk n is the number of times we can divide n by k before we
reach 1

I Integer approximation: number of times we can divide n by k
without going strictly below 1

I log2 30 ≈ 4 because
30

24
> 1 but

30

25
< 1

I Keep dividing n by k till we reach 1

mylog :: Int -> Int -> Int

mylog k 1 = 0

mylog k n = 1 + (mylog k (div n k))

Oops!

Example: Approximating the logarithm

I logk n is the number of times we can divide n by k before we
reach 1

I Integer approximation: number of times we can divide n by k
without going strictly below 1

I log2 30 ≈ 4 because
30

24
> 1 but

30

25
< 1

I Keep dividing n by k till we reach 1, or go below 1!

mylog :: Int -> Int -> Int

mylog k 1 = 0

mylog k n

| n >= k = 1 + (mylog k (div n k))

| otherwise = 0

Example: Reversing the digits in an integer

I intreverse 13276 ; 67231

I Strategy

I Split 13276 as 1327 and 6 using div 13276 10 and
mod 13276 10

I Recursively reverse 1327

I Multiply 6 by appropriate power of 10 and add

I Use mylog to decide the power of 10 to use

intreverse :: Int -> Int

intreverse n

| n < 10 = n

| otherwise = (intreverse (div n 10)) +

(mod n 10)*(power 10 (mylog 10 n))

Example: Reversing the digits in an integer

I intreverse 13276 ; 67231

I Strategy

I Split 13276 as 1327 and 6 using div 13276 10 and
mod 13276 10

I Recursively reverse 1327

I Multiply 6 by appropriate power of 10 and add

I Use mylog to decide the power of 10 to use

intreverse :: Int -> Int

intreverse n

| n < 10 = n

| otherwise = (intreverse (div n 10)) +

(mod n 10)*(power 10 (mylog 10 n))

Example: Reversing the digits in an integer

I intreverse 13276 ; 67231

I Strategy

I Split 13276 as 1327 and 6 using div 13276 10 and
mod 13276 10

I Recursively reverse 1327

I Multiply 6 by appropriate power of 10 and add

I Use mylog to decide the power of 10 to use

intreverse :: Int -> Int

intreverse n

| n < 10 = n

| otherwise = (intreverse (div n 10)) +

(mod n 10)*(power 10 (mylog 10 n))

Example: Reversing the digits in an integer

I intreverse 13276 ; 67231

I Strategy

I Split 13276 as 1327 and 6 using div 13276 10 and
mod 13276 10

I Recursively reverse 1327

I Multiply 6 by appropriate power of 10 and add

I Use mylog to decide the power of 10 to use

intreverse :: Int -> Int

intreverse n

| n < 10 = n

| otherwise = (intreverse (div n 10)) +

(mod n 10)*(power 10 (mylog 10 n))

Example: Reversing the digits in an integer

I intreverse 13276 ; 67231

I Strategy

I Split 13276 as 1327 and 6 using div 13276 10 and
mod 13276 10

I Recursively reverse 1327

I Multiply 6 by appropriate power of 10 and add

I Use mylog to decide the power of 10 to use

intreverse :: Int -> Int

intreverse n

| n < 10 = n

| otherwise = (intreverse (div n 10)) +

(mod n 10)*(power 10 (mylog 10 n))

Example: Reversing the digits in an integer

I intreverse 13276 ; 67231

I Strategy

I Split 13276 as 1327 and 6 using div 13276 10 and
mod 13276 10

I Recursively reverse 1327

I Multiply 6 by appropriate power of 10 and add

I Use mylog to decide the power of 10 to use

intreverse :: Int -> Int

intreverse n

| n < 10 = n

| otherwise = (intreverse (div n 10)) +

(mod n 10)*(power 10 (mylog 10 n))

Lists

I To describe a collection of values in Haskell, use a list

I [1,2,3,1] is a list of Int
I [True,False,True] is a list of Bool

I Elements of a list must all be of one type

I Cannot write [1,2,True] or [3,’a’]

I List of underlying type T has type [T]

I [1,2,3,1]::[Int]
I [True,False,True]::[Bool]

I Empty list is [] for all types

I Lists can be nested

I [[3,2],[],[7,7,7]] is of type [[Int]]

Lists

I To describe a collection of values in Haskell, use a list

I [1,2,3,1] is a list of Int
I [True,False,True] is a list of Bool

I Elements of a list must all be of one type

I Cannot write [1,2,True] or [3,’a’]

I List of underlying type T has type [T]

I [1,2,3,1]::[Int]
I [True,False,True]::[Bool]

I Empty list is [] for all types

I Lists can be nested

I [[3,2],[],[7,7,7]] is of type [[Int]]

Lists

I To describe a collection of values in Haskell, use a list

I [1,2,3,1] is a list of Int
I [True,False,True] is a list of Bool

I Elements of a list must all be of one type

I Cannot write [1,2,True] or [3,’a’]

I List of underlying type T has type [T]

I [1,2,3,1]::[Int]
I [True,False,True]::[Bool]

I Empty list is [] for all types

I Lists can be nested

I [[3,2],[],[7,7,7]] is of type [[Int]]

Lists

I To describe a collection of values in Haskell, use a list

I [1,2,3,1] is a list of Int
I [True,False,True] is a list of Bool

I Elements of a list must all be of one type

I Cannot write [1,2,True] or [3,’a’]

I List of underlying type T has type [T]

I [1,2,3,1]::[Int]
I [True,False,True]::[Bool]

I Empty list is [] for all types

I Lists can be nested

I [[3,2],[],[7,7,7]] is of type [[Int]]

Internal representation on lists

I Basic list building operator is :

I Append an element to the left of a list
I 1:[2,3,4] ; [1,2,3,4]

I All Haskell lists are built up from [] using operator :

I [1,2,3,4] is actually 1:(2:(3:(4:[])))
I : is right associative, so 1:2:3:4:[] = 1:(2:(3:(4:[])))

I Functions head and tail to decompose a list

I head (x:l) = x
I tail (x:l) = l
I Undefined for []
I head returns a value, tail returns a list

Internal representation on lists

I Basic list building operator is :

I Append an element to the left of a list
I 1:[2,3,4] ; [1,2,3,4]

I All Haskell lists are built up from [] using operator :

I [1,2,3,4] is actually 1:(2:(3:(4:[])))
I : is right associative, so 1:2:3:4:[] = 1:(2:(3:(4:[])))

I Functions head and tail to decompose a list

I head (x:l) = x
I tail (x:l) = l
I Undefined for []
I head returns a value, tail returns a list

Internal representation on lists

I Basic list building operator is :

I Append an element to the left of a list
I 1:[2,3,4] ; [1,2,3,4]

I All Haskell lists are built up from [] using operator :

I [1,2,3,4] is actually 1:(2:(3:(4:[])))
I : is right associative, so 1:2:3:4:[] = 1:(2:(3:(4:[])))

I Functions head and tail to decompose a list

I head (x:l) = x
I tail (x:l) = l
I Undefined for []
I head returns a value, tail returns a list

Defining list functions inductively

I Natural numbers are built up from 0 using succ n
I Define f 0 explicitly and give a rule to compute f (succ n)

by combining n and f n

I Lists are built up from [] using :
I Define f for []
I Compute f l by combining head l and f (tail l)

mylength :: [Int] -> Int

mylength [] = 0

mylength l = 1 + (mylength (tail l))

mysum :: [Int] -> Int

mysum [] = 0

mysum l = (head l) + (mysum (tail l))

Defining list functions inductively

I Natural numbers are built up from 0 using succ n
I Define f 0 explicitly and give a rule to compute f (succ n)

by combining n and f n

I Lists are built up from [] using :
I Define f for []
I Compute f l by combining head l and f (tail l)

mylength :: [Int] -> Int

mylength [] = 0

mylength l = 1 + (mylength (tail l))

mysum :: [Int] -> Int

mysum [] = 0

mysum l = (head l) + (mysum (tail l))

Defining list functions inductively

I Natural numbers are built up from 0 using succ n
I Define f 0 explicitly and give a rule to compute f (succ n)

by combining n and f n

I Lists are built up from [] using :
I Define f for []
I Compute f l by combining head l and f (tail l)

mylength :: [Int] -> Int

mylength [] = 0

mylength l = 1 + (mylength (tail l))

mysum :: [Int] -> Int

mysum [] = 0

mysum l = (head l) + (mysum (tail l))

Defining list functions inductively

I Natural numbers are built up from 0 using succ n
I Define f 0 explicitly and give a rule to compute f (succ n)

by combining n and f n

I Lists are built up from [] using :
I Define f for []
I Compute f l by combining head l and f (tail l)

mylength :: [Int] -> Int

mylength [] = 0

mylength l = 1 + (mylength (tail l))

mysum :: [Int] -> Int

mysum [] = 0

mysum l = (head l) + (mysum (tail l))

Defining list functions inductively

I Natural numbers are built up from 0 using succ n
I Define f 0 explicitly and give a rule to compute f (succ n)

by combining n and f n

I Lists are built up from [] using :
I Define f for []
I Compute f l by combining head l and f (tail l)

mylength :: [Int] -> Int

mylength [] = 0

mylength l = 1 + (mylength (tail l))

mysum :: [Int] -> Int

mysum [] = 0

mysum l = (head l) + (mysum (tail l))

Defining list functions inductively

I Natural numbers are built up from 0 using succ n
I Define f 0 explicitly and give a rule to compute f (succ n)

by combining n and f n

I Lists are built up from [] using :
I Define f for []
I Compute f l by combining head l and f (tail l)

mylength :: [Int] -> Int

mylength [] = 0

mylength l = 1 + (mylength (tail l))

mysum :: [Int] -> Int

mysum [] = 0

mysum l = (head l) + (mysum (tail l))

Functions on lists . . .

I Implicitly extract head and tail using pattern matching

mylength :: [Int] -> Int

mylength [] = 0

mylength (x:xs) = 1 + (mylength xs)

mysum :: [Int] -> Int

mysum [] = 0

mysum (x:xs) = x + (mysum xs)

Functions on lists . . .

I Append to the right: appendright 1 [2,3] ; [2,3,1]

appendright :: Int -> [Int] -> [Int]

appendright x [] = [x]

appendright x (y:ys) = y:(appendright x ys)

I Combine two lists into one — append

I append [3,2] [4,6,7] ;[3,2,4,6,7]

append :: [Int] -> [Int] -> [Int]

append [] ys = ys

append (x:xs) ys = x:(append xs ys)

I Builtin operator ++ for append

I [1,2,3] ++ [4,3] ; [1,2,3,4,3]

Functions on lists . . .

I Append to the right: appendright 1 [2,3] ; [2,3,1]

appendright :: Int -> [Int] -> [Int]

appendright x [] = [x]

appendright x (y:ys) = y:(appendright x ys)

I Combine two lists into one — append

I append [3,2] [4,6,7] ;[3,2,4,6,7]

append :: [Int] -> [Int] -> [Int]

append [] ys = ys

append (x:xs) ys = x:(append xs ys)

I Builtin operator ++ for append

I [1,2,3] ++ [4,3] ; [1,2,3,4,3]

Functions on lists . . .

I Append to the right: appendright 1 [2,3] ; [2,3,1]

appendright :: Int -> [Int] -> [Int]

appendright x [] = [x]

appendright x (y:ys) = y:(appendright x ys)

I Combine two lists into one — append

I append [3,2] [4,6,7] ;[3,2,4,6,7]

append :: [Int] -> [Int] -> [Int]

append [] ys = ys

append (x:xs) ys = x:(append xs ys)

I Builtin operator ++ for append

I [1,2,3] ++ [4,3] ; [1,2,3,4,3]

Functions on lists . . .

I Append to the right: appendright 1 [2,3] ; [2,3,1]

appendright :: Int -> [Int] -> [Int]

appendright x [] = [x]

appendright x (y:ys) = y:(appendright x ys)

I Combine two lists into one — append

I append [3,2] [4,6,7] ;[3,2,4,6,7]

append :: [Int] -> [Int] -> [Int]

append [] ys = ys

append (x:xs) ys = x:(append xs ys)

I Builtin operator ++ for append

I [1,2,3] ++ [4,3] ; [1,2,3,4,3]

Functions on lists . . .

I Append to the right: appendright 1 [2,3] ; [2,3,1]

appendright :: Int -> [Int] -> [Int]

appendright x [] = [x]

appendright x (y:ys) = y:(appendright x ys)

I Combine two lists into one — append

I append [3,2] [4,6,7] ;[3,2,4,6,7]

append :: [Int] -> [Int] -> [Int]

append [] ys = ys

append (x:xs) ys = x:(append xs ys)

I Builtin operator ++ for append

I [1,2,3] ++ [4,3] ; [1,2,3,4,3]

Functions on lists . . .

I Reversing a list

myreverse :: [Int] -> [Int]

myreverse [] = []

myreverse (x:xs) = (myreverse xs)++[x]

I Check if a list of integers is sorted.

ascending :: [Int] -> Bool

ascending [] = True

ascending [x] = True

ascending (x:y:ys)

| (x <= y) = ascending (y:ys)

| otherwise = False

Functions on lists . . .

I Reversing a list

myreverse :: [Int] -> [Int]

myreverse [] = []

myreverse (x:xs) = (myreverse xs)++[x]

I Check if a list of integers is sorted.

ascending :: [Int] -> Bool

ascending [] = True

ascending [x] = True

ascending (x:y:ys)

| (x <= y) = ascending (y:ys)

| otherwise = False

Functions on lists . . .

I Reversing a list

myreverse :: [Int] -> [Int]

myreverse [] = []

myreverse (x:xs) = (myreverse xs)++[x]

I Check if a list of integers is sorted.

ascending :: [Int] -> Bool

ascending [] = True

ascending [x] = True

ascending (x:y:ys)

| (x <= y) = ascending (y:ys)

| otherwise = False

Functions on lists . . .

I Reversing a list

myreverse :: [Int] -> [Int]

myreverse [] = []

myreverse (x:xs) = (myreverse xs)++[x]

I Check if a list of integers is sorted.

ascending :: [Int] -> Bool

ascending [] = True

ascending [x] = True

ascending (x:y:ys)

| (x <= y) = ascending (y:ys)

| otherwise = False

Functions on Lists ...

I Check if a list of integers is alternating.

alternating :: [Int] -> Bool

alternating l = (updown l) || (downup l)

updown :: [Int] -> Bool

updown [] = True

updown [x] = True

updown (x:y:ys) = (x < y) && (downup (y:ys))

downup :: [Int] -> Bool

downup [] = True

downup [x] = True

downup (x:y:ys) = (x > y) && (updown (y:ys))

Functions on Lists ...

I Check if a list of integers is alternating.

alternating :: [Int] -> Bool

alternating l = (updown l) || (downup l)

updown :: [Int] -> Bool

updown [] = True

updown [x] = True

updown (x:y:ys) = (x < y) && (downup (y:ys))

downup :: [Int] -> Bool

downup [] = True

downup [x] = True

downup (x:y:ys) = (x > y) && (updown (y:ys))

Some built in functions on lists

I head, tail, length, sum, reverse, . . .

I init l returns all but the last element of l
init [1,2,3] ; [1,2]

init [2] ; []

I last l returns the last element in l

last [1,2,3] ; 3

last [2] ; 2

I take n l returns first n values in l

I drop n l leaves out first n values in l

l == (take n l) ++ (drop n l)

Some built in functions on lists

I head, tail, length, sum, reverse, . . .

I init l returns all but the last element of l
init [1,2,3] ; [1,2]

init [2] ; []

I last l returns the last element in l

last [1,2,3] ; 3

last [2] ; 2

I take n l returns first n values in l

I drop n l leaves out first n values in l

l == (take n l) ++ (drop n l)

Some built in functions on lists

I head, tail, length, sum, reverse, . . .

I init l returns all but the last element of l
init [1,2,3] ; [1,2]

init [2] ; []

I last l returns the last element in l

last [1,2,3] ; 3

last [2] ; 2

I take n l returns first n values in l

I drop n l leaves out first n values in l

l == (take n l) ++ (drop n l)

Polymorphism

Consider the functions length, reverse, init, ...

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []

myinit (x:xs) = x:(myinit xs)

None of these functions look into the elements of the list.

In Haskell, these functions will work over lists of any type!

Polymorphic Functions

mylength :: [a] -> Int

Polymorphism

Consider the functions length, reverse, init, ...

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []

myinit (x:xs) = x:(myinit xs)

None of these functions look into the elements of the list.

In Haskell, these functions will work over lists of any type!

Polymorphic Functions

mylength :: [a] -> Int

Polymorphism

Consider the functions length, reverse, init, ...

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []

myinit (x:xs) = x:(myinit xs)

None of these functions look into the elements of the list.

In Haskell, these functions will work over lists of any type!

Polymorphic Functions

mylength :: [a] -> Int

Polymorphism

Consider the functions length, reverse, init, ...

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []

myinit (x:xs) = x:(myinit xs)

None of these functions look into the elements of the list.

In Haskell, these functions will work over lists of any type!

Polymorphic Functions

mylength :: [a] -> Int

Polymorphism

Consider the functions length, reverse, init, ...

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []

myinit (x:xs) = x:(myinit xs)

None of these functions look into the elements of the list.

In Haskell, these functions will work over lists of any type!

Polymorphic Functions

mylength :: [a] -> Int

Polymorphism

Consider the functions length, reverse, init, ...

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []

myinit (x:xs) = x:(myinit xs)

None of these functions look into the elements of the list.

In Haskell, these functions will work over lists of any type!

Polymorphic Functions

mylength :: [a] -> Int

Polymorphism

Consider the functions length, reverse, init, ...

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []

myinit (x:xs) = x:(myinit xs)

None of these functions look into the elements of the list.

In Haskell, these functions will work over lists of any type!

Polymorphic Functions

mylength :: [a] -> Int

