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Evaluating postfix expressions

◮ Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

◮ Another example:

2 3 + 7 2 + -

-4

◮ Keep a stack of numbers.
◮ If you see a number, push it on to the stack.
◮ If you seen an operator, remove the top two elements from the

stack, evaluate and push the result on the stack.
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Programming the calculator in Haskell

◮ The structure of the program:

◮ A module to manage stacks.

◮ A module that handles expressions and their evalutation.
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empty :: Stack a

empty = Empty
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push x st = Stack x st
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isempty :: Stack a -> Bool
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The Stack module

◮ Methods empty, push, pop and isempty.

◮ As general a type as possible for Stack.

data Stack a = Empty | Stack a (Stack a)

empty :: Stack a

empty = Empty

push :: a -> Stack a -> Stack a

push x st = Stack x st

pop :: Stack a -> (a, Stack a)

pop (Stack x st) = (x, st)

isempty :: Stack a -> Bool

isempty Empty = True

isempty _ = False

◮ It looks very much like a list!



The Stack module via lists

data Stack a = Stack [a]

empty :: Stack a

empty = Stack []

push :: a -> Stack a -> Stack a

push x (Stack ls) = Stack (x:ls)

pop :: Stack a -> (a, Stack a)

pop (Stack (x:ls)) = (x, Stack ls)

isempty :: Stack a -> Bool

isempty (Stack []) = True

isempty _ = False
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The Stack Module

◮ The module exports the following

◮ The data type Stack without any of its constructors.

◮ The methods empty, push, pop and isempty

module Stack(Stack(),empty,push,pop,isempty) where

data Stack a = ...

empty :: Stack a

...

push :: a -> Stack a -> Stack a

...

pop :: Stack a -> (a, Stack a)

...

isempty :: Stack a -> Bool

...
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The calculator module

◮ The postfix expression is a sequence of integers and operators.

◮ How do we represent it in Haskell?

◮ We use the word Token to denote an element of the
expression

data Token = Val Int | Op Char

type Expr = [Token]
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◮ An one step evaluation function:

evalStep :: Stack Int -> Token -> Stack Int

evalStep st (Val i) = push i st

evalStep st (Op c)

| c == ’+’ = push (v2 + v1) st2

| c == ’-’ = push (v2 - v1) st2

| c == ’*’ = push (v2 * v1) st2

where

(v1,st1) = pop st
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Evaluating an expression

◮ An one step evaluation function:

evalStep :: Stack Int -> Token -> Stack Int

evalStep st (Val i) = push i st

evalStep st (Op c)

| c == ’+’ = push (v2 + v1) st2

| c == ’-’ = push (v2 - v1) st2

| c == ’*’ = push (v2 * v1) st2

where

(v1,st1) = pop st

(v2,st2) = pop st1

◮ How to iterate this and evaluate the entire expression?



Evaluating an expression



Evaluating an expression

◮ The top of stack has the answer at the end.



Evaluating an expression

◮ The top of stack has the answer at the end.

evalExp st [] = fst (pop st)



Evaluating an expression

◮ The top of stack has the answer at the end.

evalExp st [] = fst (pop st)

◮ Otherwise, evaluate recursively using evalStep



Evaluating an expression

◮ The top of stack has the answer at the end.

evalExp st [] = fst (pop st)

◮ Otherwise, evaluate recursively using evalStep

evalExp st (e:es) = evalExp (evalStep st e) es



Evaluating an expression

◮ The top of stack has the answer at the end.
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Evaluating an expression

◮ The top of stack has the answer at the end.

evalExp st [] = fst (pop st)

◮ Otherwise, evaluate recursively using evalStep

evalExp st (e:es) = evalExp (evalStep st e) es

evaluate exp = evalExp empty exp

◮ Now, we can use any implementation of the Stack and it
works identically.
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Queues

◮ Queues follow the First-in first-out rule.

◮ Required operations

emptyq :: Queue a

addq :: a -> (Queue a) -> (Queue a)

removeq :: (Queue a) -> (a,Queue a)

isemptyq :: (Queue a) -> Bool

◮ Again, represent a queue using a list

data Queue a = Qu [a]

emptyq = Qu []

addq x (Qu xs) = (Qu (xs ++ [x]))

removeq (Qu (x:xs)) = (x,Qu xs)

isempty (Qu l) = (l == [])



Queues . . .

◮ Inserting takes O(n) time!



Queues . . .

◮ Inserting takes O(n) time!

◮ If we reverse the representation?

addq x (Qu xs) = (Qu (x:xs))

removeq (Qu xs) = ((last x),Qu (init xs))



Queues . . .

◮ Inserting takes O(n) time!

◮ If we reverse the representation?

addq x (Qu xs) = (Qu (x:xs))

removeq (Qu xs) = ((last x),Qu (init xs))

Now, removing an element takes O(n) time.

Adding and removing n elements could take O(n2) time
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Queues with two lists

◮ Use two lists

◮ Split queue and store the rear in reversed order in a reversed

Represent [q1, q2, . . . , qn]
as [q1, q2, . . . , qi ], [qn, qn−1, . . . , qi+1]

◮ addq adds an element at beginning of second list in time O(1)

◮ removeq removes the element at the beginning of first list in
time O(1), if this list is nonempty!

◮ What happens if the first list is empty?

◮ If the first list is empty, reverse the second list on to the first
list and then remove the first element.
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◮ Definition of queue functions

◮ addq adds to second list

addq x (Nuqu ys zs) = Nuqu ys (x:zs)

◮ removeq takes from first list, reversing elements from second
list into first list if necessary

removeq (Nuqu (x:xs) ys) = (x,Nuqu xs ys)
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addq x (Nuqu ys zs) = Nuqu ys (x:zs)
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Queues . . .

data Queue a = Nuqu [a] [a]

◮ Definition of queue functions

◮ addq adds to second list

addq x (Nuqu ys zs) = Nuqu ys (x:zs)

◮ removeq takes from first list, reversing elements from second
list into first list if necessary

removeq (Nuqu (x:xs) ys) = (x,Nuqu xs ys)

removeq (Nuqu [] ys) = removeq (Nuqu (reverse ys) [])

◮ If we add n elements, we get a queue Nuqu [] [qn,...,q1]

◮ Next removeq takes O(n) time to reverse the second list
◮ After one removeq, we have Nuqu [q2,...,qn] []
◮ Next n − 1 removeq operations take time O(1)!
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Amortised analysis

◮ How many times is an element touched.

◮ Once when it is inserted (into the second list)
◮ Twice when it moves from the second list to the first list.
◮ Once when it is removed (from the first list)

◮ Each element can be touched only four times.

◮ In any sequence of N instructions at most N elements are
involved.

◮ Any sequence of N instructions can take only O(N) steps!
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The Set datastructure

◮ Maintain a collection of distinct elements and support the
following operations

◮ insert : inserts a given value into the set.

◮ delete : deletes a given value from the set.

◮ search : checks whether a given value is an element of the
set.

data Eq a => Set a = Set [a]

search x (Set y)= elem x y

insert x (Set s)

| elem x (Set s) = Set s

| otherwise = Set (x:s)

delete x (Set s) = Set (filter (/= x) s)
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Complexity of the operations

◮ search takes linear time.

◮ insert takes linear time.

◮ delete takes linear time.

◮ A sequence of N operations can take O(N2) time.

◮ We can do better if the elements of the type a can be ordered.



A datatype for binary trees

◮ Trees are recursive datatypes

◮ A tree is either

◮ Empty
◮ Or is a node containing a value and two trees

x

left right
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The binary tree datatype

data Btree a = Nil | Node (Btree a) a (Btree a)

◮ Nil and Node are the constructors.

◮ Nil represents the empty tree.

◮ A nonempty tree (identified by the constructor Node) has
three parts

◮ A left (sub-)tree
◮ A value
◮ A right (sub-)tree
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Examples of trees

Node (Node Nil 2 Nil) 3 (Node Nil 5 Nil)

3

/ \

2 5

Node (Node Nil 4 Nil) 6

(Node (Node Nil 2 Nil) 3 (Node Nil 5 Nil))

6

/ \

4 3

/ \

2 5
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Binary Trees ...

◮ What about

4

/ \

2 5

/ \

1 3

Node (Node (Node Nil 1 Nil) 2 (Node Nil 3 Nil))

4 (Node Nil 5 Nil)
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Functions on Binary trees

◮ size – Number of nodes in the tree

size :: Btree a -> Int

size Nil = 0

size (Node tl x tr) = 1 + (size tl) + (size tr)

◮ height – Longest path from the root to a leaf

height :: Btree a -> Int

height Nil = 0

height (Node t1 x tr) =

1 + (max (height tl) (height tr))



Levels

◮ List nodes level by level and from left to right within each
level.
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Levels

◮ List nodes level by level and from left to right within each
level.

4

/ \

2 5

/ \

1 3

[4,2,5,1,3]


