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Functions with multiple inputs . ..

» Consider a function with many arguments
fx1x2 ...xn=y
» Suppose each input xi is of type Int

» Suppose Output v is of type Bool
» Type of £ is

f::Int -> (Int -=> ( ...(Int -> Bool) ...))

» For convenience, we are allowed to write

» £ x1 x2 ...xn
to mean
(...((f x1) x2) ...xn)
» £ :: Int -> Int -> ...Int -> Bool
to mean
f :: Int -> (Int -> ( ...(Int -> Bool) ...))

» This works for any combination of input and output types
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Functions in Haskell

» Pattern Matching

factorial :: Int -> Int
factorial O 1
factorial n = n * (factorial (n-1))

» Conditional definitions
factorial :: Int -> Int
factorial 0 = 1
factorial n
| n < 0 = factorial (-n)
| n >0 =n * (factorial (n-1))

> Using otherwise

xor :: Bool -> Bool -> Bool
xor bl b2

| bl && not(b2) = True

| not(bl) && b2 = True

| otherwise = False
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Functions in Haskell

» Wild Cards.
or :: Bool -> Bool -> Bool
or True _ = True
or _ True = True
or = False

» _matches anything, but cannot be used in the righthand side.

or :: Bool -> Bool -> Bool
or False x = x

or x False = x

or = True
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Computation as rewriting

» Use definitions to simplify expressions till no further
simplification is possible
» Builtin simplifications
» 3 +5~8
» True || False ~» True
» Simplifications based on user defined functions
power :: Int -> Int -> Int
power x 0 =1
power x n = x * (power x (n-1))



Computation as rewriting

v

Use definitions to simplify expressions till no further
simplification is possible

v

Builtin simplifications
» 3+ 5~ 8
» True || False ~» True

v

Simplifications based on user defined functions
power :: Int -> Int -> Int
power x 0 = 1
power x n = x * (power x (n-1))

» power 3 2

~ 3 * (power 3 (2-1))

~ 3 * (power 3 1)

~ 3 * (3 * (power 3 (1-1)))
~» 3 * (3 * (power 3 0))

~ 3 * (3 *% 1)

~ 3 * 3~ 9
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» A function to calculate the gcd of two given numbers:

mygcd:: Int -> Int -> Int
mygcd x 0 = x
mygcd x n
| (x <= n) = myged x (n-x)
| otherwise = mygcd n x
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Largest Divisor

» A function to determine the largest divisor (other than itself)
of a given number.

largediv :: Int -> Int
largediv n = divaux n (n-1)

divaux :: Int -> Int -> Int
divaux i j
| (mod i j ==0) = j
| otherwise = divaux i (j-1)
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> log, n is the number of times we can divide n by k before we
reach 1

> Integer approximation: number of times we can divide n by k
without going strictly below 1

30 30
> log, 30 = 4 because o > 1 but > <1
» Keep dividing n by k till we reach 1
mylog :: Int -> Int -> Int
mylog k 1 =0
mylog k n = 1 + (mylog k (div n k))
Oops!



Example: Approximating the logarithm

> log, n is the number of times we can divide n by k before we
reach 1

> Integer approximation: number of times we can divide n by k
without going strictly below 1

> log, 30 = 4 because g > 1 but ;—8 <1

» Keep dividing n by k till we reach 1, or go below 1!

mylog :: Int -> Int -> Int

mylog k 1 =0

mylog k n
| n >=k 1 + (mylog k (div n k))
| otherwise =0
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Example: Reversing the digits in an integer

» intreverse 13276 ~ 67231
> Strategy

» Split 13276 as 1327 and 6 using div 13276 10 and
mod 13276 10

» Recursively reverse 1327

» Multiply 6 by appropriate power of 10 and add

» Use mylog to decide the power of 10 to use

intreverse :: Int -> Int
intreverse n

| n < 10 =n

| otherwise

(intreverse (div n 10)) +
(mod n 10)*(power 10 (mylog 10 n))
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Lists

» To describe a collection of values in Haskell, use a list

» [1,2,3,1] is a list of Int
» [True,False,True] is a list of Bool

» Elements of a list must all be of one type
» Cannot write [1,2,True] or [3,’2a’]
» List of underlying type T has type [T]
» [1,2,3,1]::[Int]
» [True,False,True]:: [Booll
» Empty list is [] for all types
> Lists can be nested

» [[3,2],01,[7,7,71] is of type [[Int]]
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Internal representation on lists

» Basic list building operator is :

» Append an element to the left of a list

» 1:[2,3,4] ~ [1,2,3,4]
» All Haskell lists are built up from [] using operator :

» [1,2,3,4] isactually 1:(2:(3:(4:[1)))

> : is right associative, so 1:2:3:4:[] = 1:(2:(3:(4:[])))
» Functions head and tail to decompose a list

head (x:1) X
tail (x:1) =1
Undefined for []
head returns a value, tail returns a list

vV vy vy
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by combining n and £ n

v

Lists are built up from [] using :
Define £ for []
Compute £ 1 by combining head 1 and £ (tail 1)

v Yy
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Defining list functions inductively

» Natural numbers are built up from 0 using succ n
» Define £ 0 explicitly and give a rule to compute £ (succ n)
by combining n and £ n

v

Lists are built up from [] using :
Define £ for []
Compute £ 1 by combining head 1 and £ (tail 1)

v Yy

mylength :: [Int] -> Int

mylength [] = 0

mylength 1 = 1 + (mylength (tail 1))
mysum :: [Int] -> Int

mysum [] = 0

mysum 1 = (head 1) + (mysum (tail 1))



Functions on lists . ..

» Implicitly extract head and tail using pattern matching

[Int] -> Int

mylength ::
=0

mylength []

mylength (x:xs) = 1 + (mylength xs)

mysum :: [Int] -> Int

mysum [] =0

mysum (x:xs) = x + (mysum xs)
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Functions on lists . ..

> Append to the right: appendright 1 [2,3] ~ [2,3,1]
appendright

appendright x []

Int -> [Int] -> [Int]

= [x]

appendright x (y:ys) = y:(appendright x ys)
» Combine two lists into one — append

» append [3,2] [4,6,7] ~[3,2,4,6,7]
append :: [Int] -> [Int] -> [Int]
append [] ys = ys

append (x:xs) ys

x: (append xs ys)




Functions on lists . ..

> Append to the right: appendright 1 [2,3] ~ [2,3,1]

appendright :: Int -> [Int] -> [Int]

appendright x [] = [x]

appendright x (y:ys) = y:(appendright x ys)
» Combine two lists into one — append

» append [3,2] [4,6,7] ~[3,2,4,6,7]

append :: [Int] -> [Int] -> [Int]

append [] ys = ys

append (x:xs) ys = x:(append xs ys)
» Builtin operator ++ for append

» [1,2,3] ++ [4,3] ~ [1,2,3,4,3]
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Functions on lists . ..

> Reversing a list

myreverse :: [Int] -> [Int]
myreverse [] = []
myreverse (x:xs) = (myreverse xs)++[x]
» Check if a list of integers is sorted.
ascending :: [Int] -> Bool
ascending [] = True

ascending [x] = True
ascending (x:y:ys)
| (x <= y)
| otherwise

ascending (y:ys)
False
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Functions on Lists ...

» Check if a list of integers is alternating.

alternating :: [Int] -> Bool
alternating 1 = (updown 1) || (downup 1)
updown :: [Int] -> Bool

updown [] = True

updown [x] = True

updown (x:y:ys) = (x < y) && (downup (y:ys))

downup :: [Int] -> Bool
downup [] = True

downup [x]
downup (x:y:ys) = (x > y) && (updown (y:ys))

True

u]
o)
I
i
it
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» init 1 returns all but the last element of 1
init [1,2,3] ~ [1,2]
init [2] ~ []
» last 1 returns the last element in 1
last [1,2,3] ~ 3
last [2] ~ 2



Some built in functions on lists

» head,

> init
init
init
» last
last
last
» take

» drop

tail, length, sum, reverse, ...

1 returns all but the last element of 1
[1,2,3] ~ [1,2]
[2] ~ []

1 returns the last element in 1
[1,2,3] ~ 3
[2] ~ 2

n 1 returns first n values in 1

n 1 leaves out first n values in 1

1 == (take n 1) ++ (drop n 1)
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Polymorphism

Consider the functions length, reverse, init,
mylength [] =0
mylength (x:xs) = 1 + mylength xs

myreverse [] = []
myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []

myinit (x:xs) = x:(myinit xs)
None of these functions look into the elements of the list.
In Haskell, these functions will work over lists of any type!
Polymorphic Functions

mylength :: [a] -> Int



