
Introduction to Programming: Lecture 4

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

20 Aug 2013

http://www.cmi.ac.in/~kumar


foldr

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)



foldr

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

x1 x2 ... xn-1 xn v

f

yn

f

yn-1

...

y2

f

y1



Combining the elements of List

sumlist :: [Int] -> Int

sumlist [] = 0

sumlist (x:xs) = x + (sumlist xs)

multlist :: [Int] -> Int

multlist [] = 1

multlist (x:xs) = x * (multlist xs)



Combining the elements of List

sumlist :: [Int] -> Int

sumlist [] = 0

sumlist (x:xs) = x + (sumlist xs)

multlist :: [Int] -> Int

multlist [] = 1

multlist (x:xs) = x * (multlist xs)

◮ Rewritten using foldr

sumlist ls = foldr (+) 0 ls

multlist ls = foldr (*) 1 ls



mylength via foldr

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

mylength :: [Int] -> Int

mylength ls = foldr f 0 ls

f x y = y+1



foldr: more examples

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)



foldr: more examples

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

foldr appendright [] ls = ??



foldr: more examples

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

foldr appendright [] ls = ??

foldr appendright [] ls = reverse ls



foldr: more examples

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

foldr appendright [] ls = ??

foldr appendright [] ls = reverse ls

◮ What does the following calculate?

foldr (++) []



foldr: more examples

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

foldr appendright [] ls = ??

foldr appendright [] ls = reverse ls

◮ What does the following calculate?

foldr (++) []

Transforms a list of lists into a list by dissolving one level of

brackets.



foldr: more examples

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

foldr appendright [] ls = ??

foldr appendright [] ls = reverse ls

◮ What does the following calculate?

foldr (++) []

Transforms a list of lists into a list by dissolving one level of

brackets.

◮ The haskell function concat.



foldr

◮ What is the type of foldr?

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)



foldr

◮ What is the type of foldr?

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

foldr :: (a -> b -> b) -> b -> [a] -> b



foldr

◮ What is the type of foldr?

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

foldr :: (a -> b -> b) -> b -> [a] -> b



Advantages of using Higher-order functions

◮ Allows reuse of code. Fewer bugs.



Advantages of using Higher-order functions

◮ Allows reuse of code. Fewer bugs.

◮ Makes code easier to read.



Advantages of using Higher-order functions

◮ Allows reuse of code. Fewer bugs.

◮ Makes code easier to read.

◮ Allows you to define your own programming language!



The function foldr1

◮ Sometimes there is no natural value to assign to the empty

list.



The function foldr1

◮ Sometimes there is no natural value to assign to the empty

list.

◮ For instance in finding the maximum in list.
◮ If the list is empty the answer should be undefined.



The function foldr1

◮ Sometimes there is no natural value to assign to the empty

list.

◮ For instance in finding the maximum in list.
◮ If the list is empty the answer should be undefined.

◮ The Haskell function foldr1 works very much like foldr but

works only on nonempty lists.

foldr1 f [x] = x

foldr1 f (x:xs) = f x (foldr1 f xs)



The function foldr1

◮ Sometimes there is no natural value to assign to the empty

list.

◮ For instance in finding the maximum in list.
◮ If the list is empty the answer should be undefined.

◮ The Haskell function foldr1 works very much like foldr but

works only on nonempty lists.

foldr1 f [x] = x

foldr1 f (x:xs) = f x (foldr1 f xs)

◮ maxlist = foldr1 max



Example: Position of a letter

◮ Given a letter c and a string s find the position of the left

most occurnace of c in s.



Example: Position of a letter

◮ Given a letter c and a string s find the position of the left

most occurnace of c in s.

position ’a’ "battle axe" = 1

position ’d’ "battle axe" = 10



Example: Position of a letter

◮ Given a letter c and a string s find the position of the left

most occurnace of c in s.

position ’a’ "battle axe" = 1

position ’d’ "battle axe" = 10

position c [] = 0

position c (x:xs)

| (x == c) = 0

| otherwise = 1 + (position c xs)



position ...

◮ Position using an accumulator.



position ...

◮ Position using an accumulator.

posAux :: Int -> Char -> String -> Int

posAux i c [] = i

posAux i c (x:xs)

| c == x = i

| otherwise = posAux (i+1) c xs



position ...

◮ Position using an accumulator.

posAux :: Int -> Char -> String -> Int

posAux i c [] = i

posAux i c (x:xs)

| c == x = i

| otherwise = posAux (i+1) c xs

position c s = posAux 0 c s



Nesting Functions using where

◮ position using where



Nesting Functions using where

◮ position using where

position :: Char -> String -> Int

position c s = posAux 0 c s

where

posAux :: Int -> Char -> String -> Int

posAux i c [] = i

posAux i c (x:xs)

| c == x = i

| otherwise = posAux (i+1) c xs



Nesting Functions using where

◮ position using where

position :: Char -> String -> Int

position c s = posAux 0 c s

where

posAux :: Int -> Char -> String -> Int

posAux i c [] = i

posAux i c (x:xs)

| c == x = i

| otherwise = posAux (i+1) c xs

◮ posAux is not visible outside position.



Avoiding arguments via where

◮ Names in any enclosing block are visible.



Avoiding arguments via where

◮ Names in any enclosing block are visible.

position :: Char -> String -> Int

position c s = posAux 0 s

where

posAux :: Int -> String -> Int

posAux i [] = i

posAux i (x:xs)

| c == x = i

| otherwise = posAux (i+1) xs



Avoiding arguments via where

◮ Names in any enclosing block are visible.

position :: Char -> String -> Int

position c s = posAux 0 s

where

posAux :: Int -> String -> Int

posAux i [] = i

posAux i (x:xs)

| c == x = i

| otherwise = posAux (i+1) xs

◮ Reduces the number of arguments that need to be used.



The function takeWhile

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile (> 7) [8,1,9,10] = [8]

takeWhile (< 10) [8,1,9,10]= [8,1,9]



The function takeWhile

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile (> 7) [8,1,9,10] = [8]

takeWhile (< 10) [8,1,9,10]= [8,1,9]

◮ Write position using takeWhile



The function takeWhile

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile (> 7) [8,1,9,10] = [8]

takeWhile (< 10) [8,1,9,10]= [8,1,9]

◮ Write position using takeWhile

position c s = length (takeWhile (/= c) s)



The function takeWhile

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile (> 7) [8,1,9,10] = [8]

takeWhile (< 10) [8,1,9,10]= [8,1,9]

◮ Write position using takeWhile

position c s = length (takeWhile (/= c) s)

◮ There is also a corresponding function dropWhile



zipWith function

◮ Recall that map applies a function to every element of a list.



zipWith function

◮ Recall that map applies a function to every element of a list.

◮ zipWith works similarly on two lists.



zipWith function

◮ Recall that map applies a function to every element of a list.

◮ zipWith works similarly on two lists.

zipWith (+) [1,2,3] [7,8,6] = [8,10,9]

zipWith (+) [1,2,3] [7,8] = [8,10]



zipWith function

◮ Recall that map applies a function to every element of a list.

◮ zipWith works similarly on two lists.

zipWith (+) [1,2,3] [7,8,6] = [8,10,9]

zipWith (+) [1,2,3] [7,8] = [8,10]

zipWith (<) [1,2,3] [2,1,4] = [True,False,True]



zipWith function

◮ Recall that map applies a function to every element of a list.

◮ zipWith works similarly on two lists.

zipWith (+) [1,2,3] [7,8,6] = [8,10,9]

zipWith (+) [1,2,3] [7,8] = [8,10]

zipWith (<) [1,2,3] [2,1,4] = [True,False,True]

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]



Example: Mark Lists

◮ marks – a list of list of integers

◮ Each list in marks corresponds to an assignment. The ith

number is the mark obtained by the ith student.

◮ Compute the total marks obtained by each student.



Example: Mark Lists

◮ marks – a list of list of integers

◮ Each list in marks corresponds to an assignment. The ith

number is the mark obtained by the ith student.

◮ Compute the total marks obtained by each student.

addMarks [[10,10,8], [9,2,10], [8,2,8], [3,7,8]]

= [30,21,34]



Example: Mark Lists

◮ marks – a list of list of integers

◮ Each list in marks corresponds to an assignment. The ith

number is the mark obtained by the ith student.

◮ Compute the total marks obtained by each student.

addMarks [[10,10,8], [9,2,10], [8,2,8], [3,7,8]]

= [30,21,34]

addMarks [[3,4],[2]] = [5]



Example: Mark Lists

◮ marks – a list of list of integers

◮ Each list in marks corresponds to an assignment. The ith

number is the mark obtained by the ith student.

◮ Compute the total marks obtained by each student.

addMarks [[10,10,8], [9,2,10], [8,2,8], [3,7,8]]

= [30,21,34]

addMarks [[3,4],[2]] = [5]

◮ Write down Haskell code for addMarks



Example: Mark Lists

◮ marks – a list of list of integers

◮ Each list in marks corresponds to an assignment. The ith

number is the mark obtained by the ith student.

◮ Compute the total marks obtained by each student.

addMarks [[10,10,8], [9,2,10], [8,2,8], [3,7,8]]

= [30,21,34]

addMarks [[3,4],[2]] = [5]

◮ Write down Haskell code for addMarks

addMarks [x] = x

addMarks (x:xs) = zipWith (+) x (addMarks xs)



Example: Mark Lists

◮ marks – a list of list of integers

◮ Each list in marks corresponds to an assignment. The ith

number is the mark obtained by the ith student.

◮ Compute the total marks obtained by each student.

addMarks [[10,10,8], [9,2,10], [8,2,8], [3,7,8]]

= [30,21,34]

addMarks [[3,4],[2]] = [5]

◮ Write down Haskell code for addMarks

addMarks [x] = x

addMarks (x:xs) = zipWith (+) x (addMarks xs)

or equivalently

addMarks = foldr1 (zipWith (+))



Mark Lists ...

◮ marks – as before.

◮ Rearrange it so that you have a list of lists in which each list

gives the marks obtained by one student.

transpose [[10,10,8], [9,2,10]]

= [[10,9],[10,2],[8,10]]

transpose [[3,4],[2]] = undefined



Mark Lists ...

◮ marks – as before.

◮ Rearrange it so that you have a list of lists in which each list

gives the marks obtained by one student.

transpose [[10,10,8], [9,2,10]]

= [[10,9],[10,2],[8,10]]

transpose [[3,4],[2]] = undefined

◮ Write a haskell function to do this.


