
Introduction to Programming: Lecture 6

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

27 August 2013

http://www.cmi.ac.in/~kumar


Folding from the Left

◮ Sometimes it is useful to combine the elements of a list from
left to right.



Folding from the Left

◮ Sometimes it is useful to combine the elements of a list from
left to right.

◮ foldl :: (a -> b -> a) -> a -> [b] -> a

foldl f v [] = v

foldl f v (x:xs) = foldl f (f v x) xs



foldl

foldl f v [] = v

foldl f v (x:xs) = foldl f (f v x) xs

v x1 x2 ... xn-1 xn

op

y1

op

y2

...

yn-1

op

yn



Ascii to Integers

◮ Translate a given String of digits into the corresponding
integer.



Ascii to Integers

◮ Translate a given String of digits into the corresponding
integer.

strtonum "234" = 234



Ascii to Integers

◮ Translate a given String of digits into the corresponding
integer.

strtonum "234" = 234

◮ Convert a character into the corresponding digit:



Ascii to Integers

◮ Translate a given String of digits into the corresponding
integer.

strtonum "234" = 234

◮ Convert a character into the corresponding digit:

chartonum :: Char -> Int

chartonum c

| (’0’ <= c) && (c <= ’9’) = (ord c) - (ord ’0’)



Ascii to Integers

◮ Translate a given String of digits into the corresponding
integer.

strtonum "234" = 234

◮ Convert a character into the corresponding digit:

chartonum :: Char -> Int

chartonum c

| (’0’ <= c) && (c <= ’9’) = (ord c) - (ord ’0’)

◮ Process the digits from the left and at each digit



Ascii to Integers

◮ Translate a given String of digits into the corresponding
integer.

strtonum "234" = 234

◮ Convert a character into the corresponding digit:

chartonum :: Char -> Int

chartonum c

| (’0’ <= c) && (c <= ’9’) = (ord c) - (ord ’0’)

◮ Process the digits from the left and at each digit
◮ Multiply the current sum by 10 and add the current digit to it.



Ascii to Integers

◮ Translate a given String of digits into the corresponding
integer.

strtonum "234" = 234

◮ Convert a character into the corresponding digit:

chartonum :: Char -> Int

chartonum c

| (’0’ <= c) && (c <= ’9’) = (ord c) - (ord ’0’)

◮ Process the digits from the left and at each digit
◮ Multiply the current sum by 10 and add the current digit to it.

nextdigit :: Int -> Char -> Int

nextdigit i c = 10*i + (chartonum c)

◮ What next?



Ascii to Integers

◮ Translate a given String of digits into the corresponding
integer.

strtonum "234" = 234

◮ Convert a character into the corresponding digit:

chartonum :: Char -> Int

chartonum c

| (’0’ <= c) && (c <= ’9’) = (ord c) - (ord ’0’)

◮ Process the digits from the left and at each digit
◮ Multiply the current sum by 10 and add the current digit to it.

nextdigit :: Int -> Char -> Int

nextdigit i c = 10*i + (chartonum c)

◮ What next? Express strtonum using nextdigit either
directly via recursion or



Ascii to Integers

◮ Translate a given String of digits into the corresponding
integer.

strtonum "234" = 234

◮ Convert a character into the corresponding digit:

chartonum :: Char -> Int

chartonum c

| (’0’ <= c) && (c <= ’9’) = (ord c) - (ord ’0’)

◮ Process the digits from the left and at each digit
◮ Multiply the current sum by 10 and add the current digit to it.

nextdigit :: Int -> Char -> Int

nextdigit i c = 10*i + (chartonum c)

◮ What next? Express strtonum using nextdigit either
directly via recursion or using foldl

strtonum = foldl nextdigit 0



Equality and Order

◮ All the basic types have equality and order defined on them



Equality and Order

◮ All the basic types have equality and order defined on them

◮ Higher order types do NOT have equality or order

map == map will result in a type error. There is no equality
defined on the type of map



Equality and Order

◮ All the basic types have equality and order defined on them

◮ Higher order types do NOT have equality or order

map == map will result in a type error. There is no equality
defined on the type of map

◮ Order (<) is also not defined on higher order types.

In general it is not possible to check if two functions compute
the same values on all inputs.



Equality over lists and tuples

◮ Equality is inherited from the underlying type.



Equality over lists and tuples

◮ Equality is inherited from the underlying type.

◮ Two lists are equal if and only if they have the same length
and the corresponding elements are equal.

[1,2,3] = [1,2,3]

[1,2,3] /= [2,1,3]



Equality over lists and tuples

◮ Equality is inherited from the underlying type.

◮ Two lists are equal if and only if they have the same length
and the corresponding elements are equal.

[1,2,3] = [1,2,3]

[1,2,3] /= [2,1,3]

◮ Two tuples are equal if and only if the corresponding positions
have equal values.

(True, False) = (True,False)

(True, 17, False) = (True, 17, False)

(True, 17, False) /= (False, 17, True)



Order in lists and tuples

◮ Tuples of the same type are ordered lexicographically provided
all the underlying types are ordered.

(False, 17, 24) < (False, 18, 1)

(False, 89) < (False, 100)



Order in lists and tuples

◮ Tuples of the same type are ordered lexicographically provided
all the underlying types are ordered.

(False, 17, 24) < (False, 18, 1)

(False, 89) < (False, 100)

(89,(+)) < (90,(+)) will result in a type error.



Order in lists and tuples

◮ Tuples of the same type are ordered lexicographically provided
all the underlying types are ordered.

(False, 17, 24) < (False, 18, 1)

(False, 89) < (False, 100)

(89,(+)) < (90,(+)) will result in a type error.

◮ Lists are ordered lexicographically if the underlying type is
ordered.

[1,2,3] < [1,2,3,0]

[] < [1]

[1,2,3] < [1,2,4]



Sorting: Insertion sorting

◮ Given a list of integers rearrange it in ascending order.



Sorting: Insertion sorting

◮ Given a list of integers rearrange it in ascending order.

◮ Here is one way to do this
◮ remove the first element to get a shorter list
◮ sort this shorter list
◮ insert the first element in the correct position in the sorted list



Sorting: Insertion sorting

◮ Given a list of integers rearrange it in ascending order.

◮ Here is one way to do this
◮ remove the first element to get a shorter list
◮ sort this shorter list
◮ insert the first element in the correct position in the sorted list

sort [2,1,3,2,4]



Sorting: Insertion sorting

◮ Given a list of integers rearrange it in ascending order.

◮ Here is one way to do this
◮ remove the first element to get a shorter list
◮ sort this shorter list
◮ insert the first element in the correct position in the sorted list

sort [2,1,3,2,4]

❀insert 2 in sort [1,3,2,4]



Sorting: Insertion sorting

◮ Given a list of integers rearrange it in ascending order.

◮ Here is one way to do this
◮ remove the first element to get a shorter list
◮ sort this shorter list
◮ insert the first element in the correct position in the sorted list

sort [2,1,3,2,4]

❀insert 2 in sort [1,3,2,4]

❀insert 2 in [1,2,3,4]



Sorting: Insertion sorting

◮ Given a list of integers rearrange it in ascending order.

◮ Here is one way to do this
◮ remove the first element to get a shorter list
◮ sort this shorter list
◮ insert the first element in the correct position in the sorted list

sort [2,1,3,2,4]

❀insert 2 in sort [1,3,2,4]

❀insert 2 in [1,2,3,4]

❀[1,2,2,3,4]



Insertion Sorting

◮ How to insert a number in the correct position in a sorted
list?



Insertion Sorting

◮ How to insert a number in the correct position in a sorted
list?

insert 3 [1,2,2,4] = [1,2,2,3,4]

insert 3 [] = [3]



Insertion Sorting

◮ How to insert a number in the correct position in a sorted
list?

insert 3 [1,2,2,4] = [1,2,2,3,4]

insert 3 [] = [3]

◮ insert Int -> [Int] -> [Int]

insert x [] = [x]

insert x (y:ys)

| (x <= y) = x:y:ys

| otherwise = y : insert x ys



Insertion Sorting

◮ How to insert a number in the correct position in a sorted
list?

insert 3 [1,2,2,4] = [1,2,2,3,4]

insert 3 [] = [3]

◮ insert Int -> [Int] -> [Int]

insert x [] = [x]

insert x (y:ys)

| (x <= y) = x:y:ys

| otherwise = y : insert x ys

◮ Note that insert is not polymorphic, in the sense that we
have seen so far, as <= is not necessarily defined on all types.



Insertion Sorting

◮ Define isort :: [Int] -> [Int] using insert



Insertion Sorting

◮ Define isort :: [Int] -> [Int] using insert

isort [] = []

isort (x:xs) = insert x (isort xs)



Insertion Sorting

◮ Define isort :: [Int] -> [Int] using insert

isort [] = []

isort (x:xs) = insert x (isort xs)

or more succinctly isort = foldr insert []



Sorting: Merge Sorting

◮ Here is another method to sort a list.
◮ Divide the list into two halves.
◮ Sort each recursively using this algorithm.
◮ Merge together the two sorted lists into a single sorted list.



Merging two sorted lists

5 16 83 99 33 55 85 93



Merging two sorted lists

5 16 83 99 33 55 85 93



Merging two sorted lists

5 16 83 99 33 55 85 93

5

5



Merging two sorted lists

5 16 83 99 33 55 85 93

5

5

16

16



Merging two sorted lists

5 16 83 99 33 55 85 93

5

5

16

16

33

33



Merging two sorted lists

5 16 83 99 33 55 85 93

5

5

16

16

33

33

55

55



Merging two sorted lists

5 16 83 99 33 55 85 93

5

5

16

16

33

33

55

55

83

83



Merging two sorted lists

5 16 83 99 33 55 85 93

5

5

16

16

33

33

55

55

83

83

85

85



Merging two sorted lists

5 16 83 99 33 55 85 93

5

5

16

16

33

33

55

55

83

83

85

85

93

93



Merging two sorted lists

5 16 83 99 33 55 85 93

5

5

16

16

33

33

55

55

83

83

85

85

93

93

99

99



Mergesort

99 5 83 16 85 33 93 55



Mergesort

99 5 83 16 85 33 93 55

99 5 83 16 85 33 93 55



Mergesort

99 5 83 16 85 33 93 55

99 5 83 16 85 33 93 55

99 5 83 16 85 33 93 55



Mergesort

99 5 83 16 85 33 93 55

99 5 83 16 85 33 93 55

99 5 83 16 85 33 93 55

99 5 83 16 85 33 93 55



Mergesort

99 5 83 16 85 33 93 55

99 5 83 16 85 33 93 55

99 5 83 16 85 33 93 55

5 99 16 83 33 85 55 93



Mergesort

99 5 83 16 85 33 93 55

99 5 83 16 85 33 93 55

5 99 16 83 33 85 55 93



Mergesort

99 5 83 16 85 33 93 55

5 99 16 83 33 85 55 93

5 16 83 99 33 55 85 93



Mergesort

99 5 83 16 85 33 93 55

5 16 83 99 33 55 85 93



Mergesort

5 16 83 99 33 55 85 93

5 16 33 55 83 85 93 99



Mergesort

5 16 33 55 83 85 93 99



Merging in Haskell

◮ merge to merge two sorted lists of integers.



Merging in Haskell

◮ merge to merge two sorted lists of integers.

merge :: [Int] -> [Int] -> [Int]

merge [] l = l

merge l [] = l

merge (x:xs) (y:ys)

| (x < y) = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys



Merging in Haskell

◮ merge to merge two sorted lists of integers.

merge :: [Int] -> [Int] -> [Int]

merge [] l = l

merge l [] = l

merge (x:xs) (y:ys)

| (x < y) = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

◮ Once again, merge is not polymorphic, in the sense that we
have seen so far, as it uses <.



Mergesort in Haskell

◮ Using merge to write down a mergesort



Mergesort in Haskell

◮ Using merge to write down a mergesort

mergesort :: [Int] -> [Int]

mergesort [] = []

mergesort [x] = [x]

mergesort l = merge (mergesort fhalf)

(mergesort shalf)

where

fhalf = take n l

shalf = drop n l

n = div (length l) 2



Sorting: Quicksort

◮ Suppose we can find the median (middle element in the sorted
order) in a list



Sorting: Quicksort

◮ Suppose we can find the median (middle element in the sorted
order) in a list

◮ Collect all values less than median and sort



Sorting: Quicksort

◮ Suppose we can find the median (middle element in the sorted
order) in a list

◮ Collect all values less than median and sort

◮ Collect all values more than median and sort



Sorting: Quicksort

◮ Suppose we can find the median (middle element in the sorted
order) in a list

◮ Collect all values less than median and sort

◮ Collect all values more than median and sort

◮ Combine these sorted sublists using ++ (No need to merge)



Sorting: Quicksort

◮ Suppose we can find the median (middle element in the sorted
order) in a list

◮ Collect all values less than median and sort

◮ Collect all values more than median and sort

◮ Combine these sorted sublists using ++ (No need to merge)

Median is not easy to find.



Quicksort

A sorting algorithm proposed by C.A.R.Hoare. It is extensively
used in practice.



Quicksort

A sorting algorithm proposed by C.A.R.Hoare. It is extensively
used in practice.

◮ Pick a pivot p from the list L



Quicksort

A sorting algorithm proposed by C.A.R.Hoare. It is extensively
used in practice.

◮ Pick a pivot p from the list L

◮ Rearrange the list as L1pL2 where



Quicksort

A sorting algorithm proposed by C.A.R.Hoare. It is extensively
used in practice.

◮ Pick a pivot p from the list L

◮ Rearrange the list as L1pL2 where
◮ L1 is the list of elements of L that are smaller than p and



Quicksort

A sorting algorithm proposed by C.A.R.Hoare. It is extensively
used in practice.

◮ Pick a pivot p from the list L

◮ Rearrange the list as L1pL2 where
◮ L1 is the list of elements of L that are smaller than p and
◮ L2 is the list of elements of L that are at least as big as p.



Quicksort

A sorting algorithm proposed by C.A.R.Hoare. It is extensively
used in practice.

◮ Pick a pivot p from the list L

◮ Rearrange the list as L1pL2 where
◮ L1 is the list of elements of L that are smaller than p and
◮ L2 is the list of elements of L that are at least as big as p.

◮ Sort L1 and L2 recursively.



Quicksort ...

265 319 389 345 159 267 348 365 128



Quicksort ...

265 319 389 345 159 267 348 365 128

159 128 265 319 389 345 267 348 365



Quicksort ...

265 319 389 345 159 267 348 365 128

159 128 265 319 389 345 267 348 365

128 159 265 267 319 345 365 389 348



Quicksort ...

265 319 389 345 159 267 348 365 128

159 128 265 319 389 345 267 348 365

128 159 265 267 319 345 365 389 348

128 159 265 267 319 345 365 389 348



Quicksort ...

265 319 389 345 159 267 348 365 128

159 128 265 319 389 345 267 348 365

128 159 265 267 319 345 365 389 348

128 159 265 267 319 345 365 389 348

128 159 265 267 319 345 348 365 389



Quicksort ...

265 319 389 345 159 267 348 365 128

159 128 265 319 389 345 267 348 365

128 159 265 267 319 345 365 389 348

128 159 265 267 319 345 365 389 348

128 159 265 267 319 345 348 365 389

128 159 265 267 319 345 348 365 389



Quicksort . . .

quicksort :: [Int] -> [Int]

quicksort [] = []

quicksort (x:xs) = (quicksort lower) ++

[splitter] ++

(quicksort upper)

where

splitter = x

lower = filter (<= x) xs

upper = filter (> x) xs



Quicksort . . .

quicksort :: [Int] -> [Int]

quicksort [] = []

quicksort (x:xs) = (quicksort lower) ++

[splitter] ++

(quicksort upper)

where

splitter = x

lower = filter (<= x) xs

upper = filter (> x) xs

◮ In the worst case, lower or upper is empty



Quicksort . . .

quicksort :: [Int] -> [Int]

quicksort [] = []

quicksort (x:xs) = (quicksort lower) ++

[splitter] ++

(quicksort upper)

where

splitter = x

lower = filter (<= x) xs

upper = filter (> x) xs

◮ In the worst case, lower or upper is empty

◮ For our choice of splitter, worst case input is any sorted list



Measuring efficiency in Haskell

◮ Computation in Haskell is rewriting

◮ Using a definition to rewrite an expression = reduction step



Measuring efficiency in Haskell

◮ Computation in Haskell is rewriting

◮ Using a definition to rewrite an expression = reduction step

◮ Count number of reduction steps T (n) for input of size n



Measuring efficiency in Haskell

◮ Computation in Haskell is rewriting

◮ Using a definition to rewrite an expression = reduction step

◮ Count number of reduction steps T (n) for input of size n

◮ What is the complexity of ++?

[] ++ y = y

(x:xs) ++ y = x:(xs++y)



Measuring efficiency in Haskell

◮ Computation in Haskell is rewriting

◮ Using a definition to rewrite an expression = reduction step

◮ Count number of reduction steps T (n) for input of size n

◮ What is the complexity of ++?

[] ++ y = y

(x:xs) ++ y = x:(xs++y)

[1,2,3] ++ [4,5,6] ->

1:([2,3] ++ [4,5,6]) ->

1:(2:([3] ++ [4,5,6])) ->

1:(2:(3:([] ++ [4,5,6]))) ->

1:(2:(3:([4,5,6])))



Measuring efficiency in Haskell

◮ Computation in Haskell is rewriting

◮ Using a definition to rewrite an expression = reduction step

◮ Count number of reduction steps T (n) for input of size n

◮ What is the complexity of ++?

[] ++ y = y

(x:xs) ++ y = x:(xs++y)

[1,2,3] ++ [4,5,6] ->

1:([2,3] ++ [4,5,6]) ->

1:(2:([3] ++ [4,5,6])) ->

1:(2:(3:([] ++ [4,5,6]))) ->

1:(2:(3:([4,5,6])))

◮ In l1 ++ l2 we use the second rule length l1 times and the
first rule once

◮ It takes as many steps as length l1 + 1



Efficiency ...

◮ We would like to define the complexity of a program to be a
function from the size of the input to the number of steps.



Efficiency ...

◮ We would like to define the complexity of a program to be a
function from the size of the input to the number of steps.

T (n) = n for ++ where n is the length of the left argument.



Efficiency ...

◮ We would like to define the complexity of a program to be a
function from the size of the input to the number of steps.

T (n) = n for ++ where n is the length of the left argument.

◮ The function ++ takes the same number of steps on inputs of
the same length.

This need not always be the case.



Efficiency ...

elem :: Int -> [Int] -> Bool

elem i [] = False

elem i (x:xs)

| (i==x) = True

| otherwise = elem i xs

◮ The number of steps taken depends on the input (not just its
length)



Efficiency ...

elem :: Int -> [Int] -> Bool

elem i [] = False

elem i (x:xs)

| (i==x) = True

| otherwise = elem i xs

◮ The number of steps taken depends on the input (not just its
length)

elem 3 [3,7,8,9] ->

True



Efficiency ...

elem :: Int -> [Int] -> Bool

elem i [] = False

elem i (x:xs)

| (i==x) = True

| otherwise = elem i xs

◮ The number of steps taken depends on the input (not just its
length)

elem 3 [3,7,8,9] ->

True

elem 3 [4,7,8,9] ->

elem 3 [7,8,9] ->

elem 3 [8,9] ->

elem 3 [9] ->

elem 3 [] ->

False



Efficiency ...

elem :: Int -> [Int] -> Bool

elem i [] = False

elem i (x:xs)

| (i==x) = True

| otherwise = elem i xs

◮ The number of steps taken depends on the input (not just its
length)

elem 3 [3,7,8,9] ->

True

elem 3 [4,7,8,9] ->

elem 3 [7,8,9] ->

elem 3 [8,9] ->

elem 3 [9] ->

elem 3 [] ->

False

◮ What do we take the value of T (n) to be?



Efficiency ...

◮ We can take the complexity T (n) on inputs of length n to be



Efficiency ...

◮ We can take the complexity T (n) on inputs of length n to be
◮ The maximum among all inputs of length n. Worst-case

complexity



Efficiency ...

◮ We can take the complexity T (n) on inputs of length n to be
◮ The maximum among all inputs of length n. Worst-case

complexity
◮ The minimum among all inputs of length n. Best-case

complexity



Efficiency ...

◮ We can take the complexity T (n) on inputs of length n to be
◮ The maximum among all inputs of length n. Worst-case

complexity
◮ The minimum among all inputs of length n. Best-case

complexity
◮ The average among all inputs of length n. Average-case

complexity



Efficiency ...

◮ We can take the complexity T (n) on inputs of length n to be
◮ The maximum among all inputs of length n. Worst-case

complexity
◮ The minimum among all inputs of length n. Best-case

complexity
◮ The average among all inputs of length n. Average-case

complexity

◮ Best-case complexity is useless. For eg. it suggests that elem
returns the answer in one step on any inputs of any length n.



Efficiency ...

◮ We can take the complexity T (n) on inputs of length n to be
◮ The maximum among all inputs of length n. Worst-case

complexity
◮ The minimum among all inputs of length n. Best-case

complexity
◮ The average among all inputs of length n. Average-case

complexity

◮ Best-case complexity is useless. For eg. it suggests that elem
returns the answer in one step on any inputs of any length n.

◮ Worst-case is pessimistic. But it assures us that on any input
of length n the program does NOT take more than T(n)

steps.



Efficiency ...

◮ We can take the complexity T (n) on inputs of length n to be
◮ The maximum among all inputs of length n. Worst-case

complexity
◮ The minimum among all inputs of length n. Best-case

complexity
◮ The average among all inputs of length n. Average-case

complexity

◮ Best-case complexity is useless. For eg. it suggests that elem
returns the answer in one step on any inputs of any length n.

◮ Worst-case is pessimistic. But it assures us that on any input
of length n the program does NOT take more than T(n)

steps.

◮ Average-case is perhaps a more accurate description. But is
usually very difficult to calculate.



Efficiency ...

◮ We can take the complexity T (n) on inputs of length n to be
◮ The maximum among all inputs of length n. Worst-case

complexity
◮ The minimum among all inputs of length n. Best-case

complexity
◮ The average among all inputs of length n. Average-case

complexity

◮ Best-case complexity is useless. For eg. it suggests that elem
returns the answer in one step on any inputs of any length n.

◮ Worst-case is pessimistic. But it assures us that on any input
of length n the program does NOT take more than T(n)

steps.

◮ Average-case is perhaps a more accurate description. But is
usually very difficult to calculate.

◮ For the purposes of this course, we stick to worst-case
analysis.



Measuring efficiency in Haskell . . .

◮ What is the complexity of reverse?
reverse [] = []

reverse (x:xs) = (reverse xs) ++ [x]



Measuring efficiency in Haskell . . .

◮ What is the complexity of reverse?
reverse [] = []

reverse (x:xs) = (reverse xs) ++ [x]

◮ Write a recurrence for T (n)

T (0) = 1

T (n) = T (n−1) + n



Measuring efficiency in Haskell . . .

◮ What is the complexity of reverse?
reverse [] = []

reverse (x:xs) = (reverse xs) ++ [x]

◮ Write a recurrence for T (n)

T (0) = 1

T (n) = T (n−1) + n

◮ Expand and solve

T (n) = T (n−1) + n

= (T (n−2) + n−1) + n

= (T (n−3) + n−2) + n−1 + n

= · · ·

= T (0) + 1 + 2 + · · ·+ n

= 1 + 1 + 2 + · · ·+ n

= n(n + 1)/2 + 1



Measuring efficiency in Haskell . . .

◮ Can we calculate the reverse faster?



Measuring efficiency in Haskell . . .

◮ Can we calculate the reverse faster?

◮ Build up the reverse list one item at a time



Measuring efficiency in Haskell . . .

◮ Can we calculate the reverse faster?

◮ Build up the reverse list one item at a time

◮ Inverting a stack of books into a second stack



Measuring efficiency in Haskell . . .

◮ Can we calculate the reverse faster?

◮ Build up the reverse list one item at a time

◮ Inverting a stack of books into a second stack

transfer [] l = l

transfer (x:xs) l = transfer xs (x:l)



Measuring efficiency in Haskell . . .

◮ Can we calculate the reverse faster?

◮ Build up the reverse list one item at a time

◮ Inverting a stack of books into a second stack

transfer [] l = l

transfer (x:xs) l = transfer xs (x:l)

◮ Clearly transfer l1 l2 = (reverse l1)++l2



Measuring efficiency in Haskell . . .

◮ Can we calculate the reverse faster?

◮ Build up the reverse list one item at a time

◮ Inverting a stack of books into a second stack

transfer [] l = l

transfer (x:xs) l = transfer xs (x:l)

◮ Clearly transfer l1 l2 = (reverse l1)++l2

◮ Therefore reverse l = transfer l []



Measuring efficiency in Haskell . . .

◮ Can we calculate the reverse faster?

◮ Build up the reverse list one item at a time

◮ Inverting a stack of books into a second stack

transfer [] l = l

transfer (x:xs) l = transfer xs (x:l)

◮ Clearly transfer l1 l2 = (reverse l1)++l2

◮ Therefore reverse l = transfer l []

◮ For transfer, input size is length l1

T (0) = 1

T (n) = T (n−1) + 1

◮ Thus T (n) = n + 1


