
Introduction to Programming: Lecture 5

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

22 August 2013

http://www.cmi.ac.in/~kumar


Mark Lists

◮ marks – as before.

◮ Rearrange it so that you have a list of lists in which each list

gives the marks obtained by one student.

transpose [[10,10,8], [9,2,10]]

= [[10,9],[10,2],[8,10]]

transpose [[3,4],[2]] = undefined



Mark Lists

◮ marks – as before.

◮ Rearrange it so that you have a list of lists in which each list

gives the marks obtained by one student.

transpose [[10,10,8], [9,2,10]]

= [[10,9],[10,2],[8,10]]

transpose [[3,4],[2]] = undefined

◮ Write a haskell function to do this.



Mark Lists

◮ marks – as before.

◮ Rearrange it so that you have a list of lists in which each list

gives the marks obtained by one student.

transpose [[10,10,8], [9,2,10]]

= [[10,9],[10,2],[8,10]]

transpose [[3,4],[2]] = undefined

◮ Write a haskell function to do this.

transpose []:xs = []

transpose xs = (map head xs):transpose (map tail xs)



List notation: ranges



List notation: ranges

◮ [m..n] ❀ [m,m+1,m+2,...,n]

◮ Empty list if n < m



List notation: ranges

◮ [m..n] ❀ [m,m+1,m+2,...,n]

◮ Empty list if n < m

[1..7] = [1,2,3,4,5,6,7]

[3..3] = [3]

[4..3] = []



List notation: ranges

◮ [m..n] ❀ [m,m+1,m+2,...,n]

◮ Empty list if n < m

[1..7] = [1,2,3,4,5,6,7]

[3..3] = [3]

[4..3] = []

◮ Arithmetic progressions

[1,3..8] = [1,3,5,7]

[2,5..19] = [2,5,8,11,14,17]



List notation: ranges

◮ [m..n] ❀ [m,m+1,m+2,...,n]

◮ Empty list if n < m

[1..7] = [1,2,3,4,5,6,7]

[3..3] = [3]

[4..3] = []

◮ Arithmetic progressions

[1,3..8] = [1,3,5,7]

[2,5..19] = [2,5,8,11,14,17]

◮ Lists in descending order

[8,7..5] = [8,7,6,5]

[12,8..-9] = [12,8,4,0,-4,-8]



Tuples in Haskell

◮ It is often useful to keep multiple pieces of data together.



Tuples in Haskell

◮ It is often useful to keep multiple pieces of data together.

◮ Data about students: Name, Id Number, Date of Birth, ...



Tuples in Haskell

◮ It is often useful to keep multiple pieces of data together.

◮ Data about students: Name, Id Number, Date of Birth, ...

("Om Puri", 1007, "1 Jan 1942")



Tuples in Haskell

◮ It is often useful to keep multiple pieces of data together.

◮ Data about students: Name, Id Number, Date of Birth, ...

("Om Puri", 1007, "1 Jan 1942")

◮ Suppose the mark list for an assignment is a list of pairs

where each pair consists of a name and a mark.



Tuples in Haskell

◮ It is often useful to keep multiple pieces of data together.

◮ Data about students: Name, Id Number, Date of Birth, ...

("Om Puri", 1007, "1 Jan 1942")

◮ Suppose the mark list for an assignment is a list of pairs

where each pair consists of a name and a mark.

[("Amitabh", 89), ("Naseerudin", 92),

("Shahrukh", 29)]



Tuples

Haskell allows the grouping together of multiple types into tuples.



Tuples

Haskell allows the grouping together of multiple types into tuples.

◮ (Int,Int) is the type whose members are pairs of integers.

(3,-21) :: (Int,Int)



Tuples

Haskell allows the grouping together of multiple types into tuples.

◮ (Int,Int) is the type whose members are pairs of integers.

(3,-21) :: (Int,Int)

◮ (Int, Bool, Int) is the type whose members are triples,

the first and third component of which are integers and the

second component is a boolean.

(13,True,97) :: (Int, Bool,Int)



Tuples

Haskell allows the grouping together of multiple types into tuples.

◮ (Int,Int) is the type whose members are pairs of integers.

(3,-21) :: (Int,Int)

◮ (Int, Bool, Int) is the type whose members are triples,

the first and third component of which are integers and the

second component is a boolean.

(13,True,97) :: (Int, Bool,Int)

◮ ([Int],Int) is the type whose members are pairs, the first is

a list of integers and the second is an integer.

([],67) :: ([Int], Int)

([1,2],73) :: ([Int],Int)



Tuples: fst and snd

◮ fst (x,y) = x and snd (x,y) = y

fst :: (a,b) -> a

snd :: (a,b) -> b



Tuples: fst and snd

◮ fst (x,y) = x and snd (x,y) = y

fst :: (a,b) -> a

snd :: (a,b) -> b

◮ fst([1,2,3],’a’) = [1,2,3]

◮ snd ([1,2,3],’a’) = ’a’



Pattern matching with tuples

◮ Haskell pattern matches tuples automatically.



Pattern matching with tuples

◮ Haskell pattern matches tuples automatically.

◮ Summing the integers in a pair.

sumpairs :: (Int,Int) -> Int

sumpairs (x,y) = x+y



Pattern matching with tuples

◮ Haskell pattern matches tuples automatically.

◮ Summing the integers in a pair.

sumpairs :: (Int,Int) -> Int

sumpairs (x,y) = x+y

◮ Summing up integers in a list of pairs.

sumpairlist :: [(Int,Int)] -> Int

sumpairlist [] = 0

sumpairlist ((x,y):ps) = x+y+(sumpairlist ps)



Pattern matching with tuples

◮ Haskell pattern matches tuples automatically.

◮ Summing the integers in a pair.

sumpairs :: (Int,Int) -> Int

sumpairs (x,y) = x+y

◮ Summing up integers in a list of pairs.

sumpairlist :: [(Int,Int)] -> Int

sumpairlist [] = 0

sumpairlist ((x,y):ps) = x+y+(sumpairlist ps)

◮ sumpairlist l = sum ((map sumpairs) l)



Tuples ...

◮ A tuple of type (String,Int) can store a student’s mark and

a marklist is of type [(String,Int)].

[("Amitabh",89),("Naseerudin",91),

("Shahrukh",29)]::[(String,Int)]



Tuples ...

◮ A tuple of type (String,Int) can store a student’s mark and

a marklist is of type [(String,Int)].

[("Amitabh",89),("Naseerudin",91),

("Shahrukh",29)]::[(String,Int)]

◮ Given a marklist and a student’s name return the mark

obtained by that student.



Tuples ...

◮ A tuple of type (String,Int) can store a student’s mark and

a marklist is of type [(String,Int)].

[("Amitabh",89),("Naseerudin",91),

("Shahrukh",29)]::[(String,Int)]

◮ Given a marklist and a student’s name return the mark

obtained by that student.

lookUp :: String -> [(String,Int)] -> Int

lookUp s ((name,marks):l)

| (s == name) = marks

| otherwise = lookUp s l



Tuples ...

◮ A tuple of type (String,Int) can store a student’s mark and

a marklist is of type [(String,Int)].

[("Amitabh",89),("Naseerudin",91),

("Shahrukh",29)]::[(String,Int)]

◮ Given a marklist and a student’s name return the mark

obtained by that student.

lookUp :: String -> [(String,Int)] -> Int

lookUp s ((name,marks):l)

| (s == name) = marks

| otherwise = lookUp s l

◮ Given a list of marklists and a student’s name, construct a list

with the marks obtained by this student.



Tuples ...

◮ A tuple of type (String,Int) can store a student’s mark and

a marklist is of type [(String,Int)].

[("Amitabh",89),("Naseerudin",91),

("Shahrukh",29)]::[(String,Int)]

◮ Given a marklist and a student’s name return the mark

obtained by that student.

lookUp :: String -> [(String,Int)] -> Int

lookUp s ((name,marks):l)

| (s == name) = marks

| otherwise = lookUp s l

◮ Given a list of marklists and a student’s name, construct a list

with the marks obtained by this student.

getStudMarks :: String -> [[(String,Int)]] -> [Int]

getStudMarks s = map (lookUp s)



Giving Names to complex types

◮ It is irritating to write [(String,Int)] repeatedly.



Giving Names to complex types

◮ It is irritating to write [(String,Int)] repeatedly.

◮ Haskell allows us to define short names for type expressions.

type Marklist = [(String,Int)]



Giving Names to complex types

◮ It is irritating to write [(String,Int)] repeatedly.

◮ Haskell allows us to define short names for type expressions.

type Marklist = [(String,Int)]

◮ We may then write

lookUp :: String -> Marklist -> Int

getStudMarks :: String -> [Marklist] -> [Int]

and so on.



Type definitions

◮ A type definition merely creates an alias.



Type definitions

◮ A type definition merely creates an alias.

◮ For instance Marklist and [(String,Int)] can be used

interchangeably.



Type definitions

◮ A type definition merely creates an alias.

◮ For instance Marklist and [(String,Int)] can be used

interchangeably.

◮ The following is a valid defintion.

type Marklist = [(String,Int)]

lookUp :: String -> Marklist -> Int

lookUp s ((name,marks):l)

| (s == name) = marks

| otherwise = lookUp s l

getStudMarks :: String -> [[(String,Int)]] -> [Int]

getStudMarks s = map (lookUp s)



The function zip

◮ Combine two lists into a list of pairs

◮ zip :: [a] -> [b] -> [(a,b)]

◮ zip stops with the shorter of two lists



The function zip

◮ Combine two lists into a list of pairs

◮ zip :: [a] -> [b] -> [(a,b)]

◮ zip stops with the shorter of two lists

◮ zip [’a’,’b’,’c’] [1..3] ❀

[(’a’,1),(’b’,2),(’c’,3)]
◮ zip [’a’..’z’] [1..10] ❀

[(’a’,1),(’b’,2),...,(’j’,10)]



Marklists again ...

◮ Given a list of Marklists, construct a Marklist giving the

total marks for each student.



Marklists again ...

◮ Given a list of Marklists, construct a Marklist giving the

total marks for each student.

◮ Assume that lists are sorted by student names.

totalMarks [[("Amitabh", 80),("Smita", 90)],

[("Amitabh",46),("Smita",38)]]

= [("Amitabh",126),("Smita",128)]



Marklists again ...

◮ Given a list of Marklists, construct a Marklist giving the

total marks for each student.

◮ Assume that lists are sorted by student names.

totalMarks [[("Amitabh", 80),("Smita", 90)],

[("Amitabh",46),("Smita",38)]]

= [("Amitabh",126),("Smita",128)]

◮ Reuse addMarks.



Marklists again ...

◮ Given a list of Marklists, construct a Marklist giving the

total marks for each student.

◮ Assume that lists are sorted by student names.

totalMarks [[("Amitabh", 80),("Smita", 90)],

[("Amitabh",46),("Smita",38)]]

= [("Amitabh",126),("Smita",128)]

◮ Reuse addMarks.

◮ Here is one way to do this.



Marklists again ...

◮ Given a list of Marklists, construct a Marklist giving the

total marks for each student.

◮ Assume that lists are sorted by student names.

totalMarks [[("Amitabh", 80),("Smita", 90)],

[("Amitabh",46),("Smita",38)]]

= [("Amitabh",126),("Smita",128)]

◮ Reuse addMarks.

◮ Here is one way to do this.
◮ Construct a list of the names from one of the marklists.



Marklists again ...

◮ Given a list of Marklists, construct a Marklist giving the

total marks for each student.

◮ Assume that lists are sorted by student names.

totalMarks [[("Amitabh", 80),("Smita", 90)],

[("Amitabh",46),("Smita",38)]]

= [("Amitabh",126),("Smita",128)]

◮ Reuse addMarks.

◮ Here is one way to do this.
◮ Construct a list of the names from one of the marklists.
◮ Strip away the names from all the marklists.



Marklists again ...

◮ Given a list of Marklists, construct a Marklist giving the

total marks for each student.

◮ Assume that lists are sorted by student names.

totalMarks [[("Amitabh", 80),("Smita", 90)],

[("Amitabh",46),("Smita",38)]]

= [("Amitabh",126),("Smita",128)]

◮ Reuse addMarks.

◮ Here is one way to do this.
◮ Construct a list of the names from one of the marklists.
◮ Strip away the names from all the marklists.
◮ Use addMarks to get the total marks



Marklists again ...

◮ Given a list of Marklists, construct a Marklist giving the

total marks for each student.

◮ Assume that lists are sorted by student names.

totalMarks [[("Amitabh", 80),("Smita", 90)],

[("Amitabh",46),("Smita",38)]]

= [("Amitabh",126),("Smita",128)]

◮ Reuse addMarks.

◮ Here is one way to do this.
◮ Construct a list of the names from one of the marklists.
◮ Strip away the names from all the marklists.
◮ Use addMarks to get the total marks
◮ Combine the list of names and list of total marks using zip



Marklists again ...

◮ Given a list of Marklists, construct a Marklist giving the

total marks for each student.

◮ Assume that lists are sorted by student names.

totalMarks [[("Amitabh", 80),("Smita", 90)],

[("Amitabh",46),("Smita",38)]]

= [("Amitabh",126),("Smita",128)]

◮ Reuse addMarks.

◮ Here is one way to do this.
◮ Construct a list of the names from one of the marklists.
◮ Strip away the names from all the marklists.
◮ Use addMarks to get the total marks
◮ Combine the list of names and list of total marks using zip

totalMarks (x:xs) =

zip (map fst x) (addMarks (map (map snd) (x:xs)))



Idiomatic programming

◮ Programming languages are . . . languages!

◮ Like “natural languages”, we can say the same thing in many

ways

◮ Initially, we use a language in its simplest and most direct form

◮ As we master the language, we learn to use it idiomatically

and more effectively



Idiomatic programming

◮ Programming languages are . . . languages!

◮ Like “natural languages”, we can say the same thing in many

ways

◮ Initially, we use a language in its simplest and most direct form

◮ As we master the language, we learn to use it idiomatically

and more effectively

◮ To learn a language, you must practice speaking it.



Example: initial segments

◮ Write a Haskell function initsegs which returns the list of

initial segments of a list.

initsegs [1,2,3] = [[],[1],[1,2],[1,2,3]]

initsegs [] = [[]]



Example: initial segments

◮ Write a Haskell function initsegs which returns the list of

initial segments of a list.

initsegs [1,2,3] = [[],[1],[1,2],[1,2,3]]

initsegs [] = [[]]

initsegs [] = [[]]

initsegs (x:xs) = [] : map (x:) (initsegs xs)



Example: interleave

◮ interleave x l inserts x into all possible positions in the

list l

interleave 3 [] = [[3]]

interleave 3 [2,3] = [[3,2,3],[2,3,3],[2,3,3]]

interleave ’a’ "abcd" =

["aabcd","aabcd","abacd","abcad","abcda"]



Example: interleave

◮ interleave x l inserts x into all possible positions in the

list l

interleave 3 [] = [[3]]

interleave 3 [2,3] = [[3,2,3],[2,3,3],[2,3,3]]

interleave ’a’ "abcd" =

["aabcd","aabcd","abacd","abcad","abcda"]

interleave x [] = [[x]]

interleave x (y:ys) = (x:y:ys) :

map (y:) (interleave x ys)



Example: Permutations

◮ Write down function that computes all the permutations of a

given list.



Example: Permutations

◮ Write down function that computes all the permutations of a

given list.

◮ Notice that this problem does not have a unique answer. We

are happy with a listing of all the permutations in any order.



Example: Permutations

◮ Write down function that computes all the permutations of a

given list.

◮ Notice that this problem does not have a unique answer. We

are happy with a listing of all the permutations in any order.

perm [1,2,3] = [[1,2,3],[2,1,3],[2,3,1],

[1,3,2],[3,1,2],[3,2,1]]



Example: Permutations

◮ Write down function that computes all the permutations of a

given list.

◮ Notice that this problem does not have a unique answer. We

are happy with a listing of all the permutations in any order.

perm [1,2,3] = [[1,2,3],[2,1,3],[2,3,1],

[1,3,2],[3,1,2],[3,2,1]]

perm [x] = [[x]]

perm (x:xs) = concat (map (interleave x) (perm xs))



Example: Permutations

◮ Write down function that computes all the permutations of a

given list.

◮ Notice that this problem does not have a unique answer. We

are happy with a listing of all the permutations in any order.

perm [1,2,3] = [[1,2,3],[2,1,3],[2,3,1],

[1,3,2],[3,1,2],[3,2,1]]

perm [x] = [[x]]

perm (x:xs) = concat (map (interleave x) (perm xs))

◮ The combination concat (map f l) appears so often that

there is a function concatMap which does precisely this:

concatMap f l = concat (map f l)



Example: Permutations

◮ Write down function that computes all the permutations of a

given list.

◮ Notice that this problem does not have a unique answer. We

are happy with a listing of all the permutations in any order.

perm [1,2,3] = [[1,2,3],[2,1,3],[2,3,1],

[1,3,2],[3,1,2],[3,2,1]]

perm [x] = [[x]]

perm (x:xs) = concat (map (interleave x) (perm xs))

◮ The combination concat (map f l) appears so often that

there is a function concatMap which does precisely this:

concatMap f l = concat (map f l)

Exercise: What is the type of concatMap



Example: Partitions

◮ Given a list l is a collection of nonempty lists l1, l2, ...,

lk such that l = l1 ++ l2 ++ ... ++ lk



Example: Partitions

◮ Given a list l is a collection of nonempty lists l1, l2, ...,

lk such that l = l1 ++ l2 ++ ... ++ lk

part [1,2,3] = [[[1],[2],[3]],[[1,2],[3]],

[[1],[2,3]],[[1,2,3]]]



Example: Partitions

◮ Given a list l is a collection of nonempty lists l1, l2, ...,

lk such that l = l1 ++ l2 ++ ... ++ lk

part [1,2,3] = [[[1],[2],[3]],[[1,2],[3]],

[[1],[2,3]],[[1,2,3]]]

◮ The type of part is part :: [a] -> [[[a]]]



Example: Partitions

◮ Given a list l is a collection of nonempty lists l1, l2, ...,

lk such that l = l1 ++ l2 ++ ... ++ lk

part [1,2,3] = [[[1],[2],[3]],[[1,2],[3]],

[[1],[2,3]],[[1,2,3]]]

◮ The type of part is part :: [a] -> [[[a]]]

part [x] = [[[x]]]

part (x:xs) = map ([x]:) (part xs) ++

map (f x) (part xs)

where

f x (y:ys) = (x:y):ys


