
SOLVING SUDOKU

Graham Hutton
University of Nottingham

(with thanks to Richard Bird)

2

What is Sudoku?

A simple but addictive puzzle, invented in the
USA in 1979 and called Number Place;

Became popular in Japan in 1986, where it was
renamed Sudoku (~ “single number”);

First appeared in UK newspapers in 2004, and
became an international craze in 2005.

3

Example

Fill in the grid so that every row, column and box
contains each of the numbers 1 to 9:

2 1 3 8
 5
 7 6
 1 3
 9 8 1 2 5 7
3 1 8
9 8 2
 5 6 9 7 8 4
4 2 5

4

Example

Fill in the grid so that every row, column and box
contains each of the numbers 1 to 9:

2 1 3 8
 5
 7 6
 1 3
 9 8 1 2 5 7
3 1 8
9 8 2
 5 6 9 7 8 4
4 2 5

What number
must go here?

5

Example

Fill in the grid so that every row, column and box
contains each of the numbers 1 to 9:

2 1 3 8
 5
 7 6
 1 3
 9 8 1 2 5 7
3 1 8
9 8 2
 5 6 9 7 8 4
4 2 5

1, as 2 and 3
already appear
in this column.

1

6

Example

Fill in the grid so that every row, column and box
contains each of the numbers 1 to 9:

2 1 3 8
 5
 7 6
 1 3
 9 8 1 2 5 7
3 1 8
9 8 2
1 5 6 9 7 8 4
4 2 5

7

Example

Fill in the grid so that every row, column and box
contains each of the numbers 1 to 9:

2 1 3 8
 5
 7 6
 1 3
 9 8 1 2 5 7
3 1 8
9 8 2
1 5 6 9 7 8 4
4 2 5

3

8

Example

Fill in the grid so that every row, column and box
contains each of the numbers 1 to 9:

2 1 3 8
 5
 7 6
 1 3
 9 8 1 2 5 7
3 1 8
9 8 2
1 5 3 6 9 7 8 4
4 2 5

9

Example

Fill in the grid so that every row, column and box
contains each of the numbers 1 to 9:

2 1 3 8
 5
 7 6
 1 3
 9 8 1 2 5 7
3 1 8
9 8 2
1 5 3 6 9 7 8 4
4 2 5

2

10

Example

Fill in the grid so that every row, column and box
contains each of the numbers 1 to 9:

2 1 3 8
 5
 7 6
 1 3
 9 8 1 2 5 7
3 1 8
9 8 2
1 5 2 3 6 9 7 8 4
4 2 5

And so on…

11

Example

Fill in the grid so that every row, column and box
contains each of the numbers 1 to 9:

2 4 9 5 7 1 6 3 8
8 6 1 4 3 2 9 7 5
5 7 3 9 8 6 1 4 2
7 2 5 6 9 8 4 1 3
6 9 8 1 4 3 2 5 7
3 1 4 7 2 5 8 6 9
9 3 7 8 1 4 2 5 6
1 5 2 3 6 9 7 8 4
4 8 6 2 5 7 3 9 1

The unique
solution for this

easy puzzle.

12

This Talk

We show how to develop a program that can
solve any Sudoku puzzle in an instant;

Start with a simple but impractical program,
which is improved in a series of steps;

Emphasis on pictures rather than code, plus
some lessons about algorithm design.

13

Representing a Grid

type Grid = Matrix Char

type Matrix a = [Row a]

type Row a = [a]

A grid is essentially a list of lists, but
matrices and rows will be useful later on.

14

Examples

easy :: Grid
easy = ["2 1 38" ,
 " 5" ,
 " 7 6 " ,
 " 13 " ,
 " 981 257" ,
 "31 8 " ,
 "9 8 2 " ,
 " 5 69784" ,
 "4 25 "]

empty :: Grid
empty = replicate 9 (replicate 9 ' ')

15

Extracting Rows

rows :: Matrix a  [Row a]
rows m = m

 1 2 3 4

 5 6 7 8

 9 10 11 12

13 14 15 16

 1 2 3 4

 5 6 7 8

 9 10 11 12

13 14 15 16

16

… Columns

cols :: Matrix a  [Row a]
cols m = transpose m

 1 2 3 4

 5 6 7 8

 9 10 11 12

13 14 15 16

 1 5 9 13

 2 6 10 14

 3 7 11 15

 4 8 12 16

17

… And Boxes

boxs :: Matrix a  [Row a]
boxs m = <omitted>

 1 2 3 4

 5 6 7 8

 9 10 11 12

13 14 15 16

 1 2 5 6

 3 4 7 8

 9 10 13 14

11 12 15 16

18

Validity Checking

Let us say that a grid is valid if it has no duplicate
entries in any row, column or box:

valid :: Grid  Bool
valid g = all nodups (rows g) 
 all nodups (cols g) 
 all nodups (boxs g)

A direct implementation,
without concern for efficiency.

19

Making Choices

Replace each blank square in a grid by all possible
numbers 1 to 9 for that square:

choices :: Grid  Matrix [Char]

1 2 3
4 5 6 3
7 8 9
 1 2 3
 4 4 5 6
 7 8 9

 3

 4

20

Collapsing Choices

Transform a matrix of lists into a list of matrices by
considering all combinations of choices:

collapse :: Matrix [a]  [Matrix a]

1 3
4 1

2 3
4 2

2 3
4 1

1 3
4 2

1 2 3

 4 1 2

21

A Brute Force Solver

solve :: Grid  [Grid]
solve = filter valid . collapse . choices

Consider all possible choices for each
blank square, collapse the resulting

matrix, then filter out the valid grids.

22

Does It Work?

> solve easy

ERROR: out of memory

Simple, but
impractical!

The easy example has 51 blank squares, resulting in
951 grids to consider, which is a huge number:

4638397686588101979328150167890591454318967698009

23

Reducing The Search Space

Many choices that are considered will conflict
with entries provided in the initial grid;

For example, an initial entry of 1 precludes
another 1 in the same row, column or box;

Pruning such invalid choices before collapsing
will considerably reduce the search space.

24

Pruning

Remove all choices that occur as single entries in
the corresponding row, column or box:

prune :: Matrix [Char]  Matrix [Char]

 1 1 2 4

1 3 3 4

 1 2 4

 3 3 4

25

And Again

Pruning may leave new single entries, so it makes
sense to iterate the pruning process:

 1 2 4

 3 3 4

26

And Again

Pruning may leave new single entries, so it makes
sense to iterate the pruning process:

 1 2 4

 3 4

27

And Again

Pruning may leave new single entries, so it makes
sense to iterate the pruning process:

 1 2

 3 4

28

And Again

Pruning may leave new single entries, so it makes
sense to iterate the pruning process:

 1 2

 3 4

We have now
reached a fixpoint of
the pruning function.

29

An Improved Solver

solve’ :: Grid  [Grid]
solve’ =

 filter valid . collapse . fix prune . choices

For the easy example, the pruning process alone is
enough to completely solve the puzzle:

> solve’ easy
Terminates
instantly!

30

But…

> solve' gentle

No solution after
two hours - we need

to think further!

For a gentle example, pruning leaves around 381
grids to consider, which is still a huge number:

443426488243037769948249630619149892803

31

Reducing The Search Space

After pruning there may still be many choices
that can never lead to a solution;

But such bad choices will be duplicated many
times during the collapsing process;

Discarding these bad choices is the key to
obtaining an efficient Sudoku solver.

32

Blocked Matrices

Let us say that a matrix is blocked if some square
has no choices left, or if some row, column, or
box has a duplicated single choice:

Key idea - a blocked
matrix can never
lead to a solution.

 1 1 2 1

3 4 3

33

Expanding One Choice

Transform a matrix of lists into a list of matrices by
expanding the first square with choices:

expand :: Matrix [a]  [Matrix [a]]

1 2 3

 4 1 2

 2 3

 4 1 2

 1 3

 4 1 2

34

Our Final Solver

solve’’ :: Grid  [Grid]
solve’’ = search . prune . choices

search :: Matrix [Char]  [Grid]
search m

 | blocked m = []

 | complete m = collapse m

 | otherwise = [g | m'  expand m
 , g  search (prune m')]

35

Notes

Using fix prune rather than prune makes the
program run slower in this case;

No need to filter out valid grids, because they
are guaranteed to be valid by construction;

This program can now solve any newspaper
Sudoku puzzle in an instant!

36

The Result
This program has
saved my life -

my Sudoku
addiction is finally

cured!!

Subliminal Message

Haskell is the world's greatest
programming language.

	PowerPoint Presentation
	What is Sudoku?
	Example
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	This Talk
	Representing a Grid
	Examples
	Extracting Rows
	… Columns
	… And Boxes
	Validity Checking
	Making Choices
	Collapsing Choices
	A Brute Force Solver
	Does It Work?
	Reducing The Search Space
	Pruning
	And Again
	Slide 26
	Slide 27
	Slide 28
	An Improved Solver
	But…
	Slide 31
	Blocked Matrices
	Expanding One Choice
	Our Final Solver
	Notes
	The Result

