
1

PROGRAMMING IN HASKELL

Chapter 11 - The Countdown Problem



2

What Is Countdown?

A popular quiz programme on British television 
that has been running since 1982.

Based upon an original French version called 
"Des Chiffres et Des Lettres".

Includes a numbers game that we shall refer to 
as the countdown problem.



3

Example

1 3 7 10 25 50

Using the numbers

and the arithmetic operators

765

+ -  

construct an expression whose value is



4

Rules

All the numbers, including intermediate results, 
must be positive naturals (1,2,3,…).

Each of the source numbers can be used at 
most once when constructing the expression.

We abstract from other rules that are adopted 
on television for pragmatic reasons.



5

For our example, one possible solution is

There are 780 solutions for this example.

Changing the target number to          gives 
an example that has no solutions.

Notes:

831

(25-10)  (50+1) 765=



6

Evaluating Expressions

Operators:

data Op = Add | Sub | Mul | Div

Apply an operator:

apply         :: Op  Int  Int  Int
apply Add x y  = x + y
apply Sub x y  = x - y
apply Mul x y  = x * y
apply Div x y  = x `div` y



7

Decide if the result of applying an operator to two 
positive natural numbers is another such:

valid         :: Op  Int  Int  Bool
valid Add _ _  = True
valid Sub x y  = x > y
valid Mul _ _  = True
valid Div x y  = x `mod` y == 0

Expressions:

data Expr = Val Int | App Op Expr Expr



8

eval            :: Expr  [Int]
eval (Val n)     = [n | n > 0]
eval (App o l r) = [apply o x y | x  eval l
                                , y  eval r
                                , valid o x y]

Return the overall value of an expression, provided 
that it is a positive natural number:

Either succeeds and returns a singleton 
list, or fails and returns the empty list.



9

Formalising The Problem

Return a list of all possible ways of choosing zero 
or more elements from a list:

choices :: [a]  [[a]]

For example:

> choices [1,2]

[[],[1],[2],[1,2],[2,1]]



10

Return a list of all the values in an expression:

values            :: Expr  [Int]
values (Val n)     = [n]
values (App _ l r) = values l ++ values r

Decide if an expression is a solution for a given list 
of source numbers and a target number:

solution       :: Expr  [Int]  Int  Bool
solution e ns n = elem (values e) (choices ns)
                  && eval e == [n]



11

Brute Force Solution

Return a list of all possible ways of splitting a list 
into two non-empty parts:

split :: [a]  [([a],[a])]

For example:

> split [1,2,3,4]

[([1],[2,3,4]),([1,2],[3,4]),([1,2,3],[4])]



12

Return a list of all possible expressions whose values 
are precisely a given list of numbers:

exprs    :: [Int]  [Expr]
exprs []  = []
exprs [n] = [Val n]
exprs ns  = [e | (ls,rs)  split ns
               , l        exprs ls
               , r        exprs rs
               , e        combine l r]

The key function in this lecture.



13

combine    :: Expr  Expr  [Expr]
combine l r =
   [App o l r | o  [Add,Sub,Mul,Div]]

Combine two expressions using each operator:

solutions     :: [Int]  Int  [Expr]
solutions ns n = [e | ns'  choices ns
                    , e    exprs ns'
                    , eval e == [n]]

Return a list of all possible expressions that solve an 
instance of the countdown problem:



14

How Fast Is It?

System:

Compiler:

Example:

One solution:

All solutions:

solutions [1,3,7,10,25,50] 765

1.2GHz Pentium M laptop

GHC version 6.4.1

0.36 seconds   

43.98 seconds



15

Many of the expressions that are considered 
will typically be invalid - fail to evaluate. 

For our example, only around 5 million of the 
33 million possible expressions are valid.

Combining generation with evaluation would 
allow earlier rejection of invalid expressions.

Can We Do Better?



16

results   :: [Int]  [Result]
results ns = [(e,n) | e  exprs ns
                    , n  eval e]

type Result = (Expr,Int)

Valid expressions and their values:

We seek to define a function that fuses together 
the generation and evaluation of expressions:

Fusing Two Functions 



17

results []  = []
results [n] = [(Val n,n) | n > 0]
results ns  =
   [res | (ls,rs)  split ns
        , lx       results ls
        , ry       results rs
        , res      combine' lx ry]

This behaviour is achieved by defining

combine' :: Result  Result  [Result]

where



18

solutions'     :: [Int]  Int  [Expr]
solutions' ns n =
   [e | ns'    choices ns
      , (e,m)  results ns'
      , m == n]

New function that solves countdown problems:

combine’ (l,x) (r,y) =
   [(App o l r, apply o x y)
      | o  [Add,Sub,Mul,Div]
      , valid o x y]

Combining results:



19

How Fast Is It Now?

Example:

One solution:

All solutions:

solutions' [1,3,7,10,25,50] 765

0.04 seconds   

3.47 seconds

Around 10 
times faster in 

both cases.



20

Many expressions will be essentially the same 
using simple arithmetic properties, such as:

Exploiting such properties would considerably 
reduce the search and solution spaces.

Can We Do Better?

x  y y  x

x  1 x

=

=



21

Exploiting Properties

Strengthening the valid predicate to take account 
of commutativity and identity properties:

valid         :: Op  Int  Int  Bool

valid Add x y  = True

valid Sub x y  = x > y

valid Mul x y  = True

valid Div x y  = x `mod` y == 0

x  
y
x  y && x  
1
x  y && x  1 && y  
1

x  
y

&& y  
1



22

How Fast Is It Now?

Example:

Valid:

Solutions:

solutions'' [1,3,7,10,25,50] 765

250,000 expressions

49 expressions

Around 20 
times less.

Around 16 
times less.



23

One solution:

All solutions:

0.02 seconds   

0.44 seconds

Around 2 
times faster.

Around 7 
times faster.

More generally, our program usually produces a 
solution to problems from the television show in 
an instant, and all solutions in under a second.


	PowerPoint Presentation
	What Is Countdown?
	Example
	Rules
	Slide 5
	Evaluating Expressions
	Slide 7
	Slide 8
	Formalising The Problem
	Slide 10
	Brute Force Solution
	Slide 12
	Slide 13
	How Fast Is It?
	Can We Do Better?
	Fusing Two Functions 
	Slide 17
	Slide 18
	How Fast Is It Now?
	Slide 20
	Exploiting Properties
	Slide 22
	Slide 23

