
Introduction to Programming: Lecture 09

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

05 Sep 2013

http://www.cmi.ac.in/~kumar

User defined polymorphic datatypes

data Box a = MyBox a

I Examples

MyBox "Monday"

MyBox 2.5

MyBox [2,3,4]

I Oops! No show function or equality.

User defined polymorphic datatypes

data Box a = MyBox a

I Examples

MyBox "Monday"

MyBox 2.5

MyBox [2,3,4]

I Oops! No show function or equality.

User defined polymorphic datatypes

data Box a = MyBox a

I Examples

MyBox "Monday"

MyBox 2.5

MyBox [2,3,4]

I Oops! No show function or equality.

User defined polymorphic datatypes

data Box a = MyBox a

I Examples

MyBox "Monday"

MyBox 2.5

MyBox [2,3,4]

I Oops! No show function or equality.

User defined polymorphic datatypes

data Box a = MyBox a

I Examples

MyBox "Monday"

MyBox 2.5

MyBox [2,3,4]

I Oops! No show function or equality.

User defined polymorphic datatypes

data Box a = MyBox a

I Examples

MyBox "Monday"

MyBox 2.5

MyBox [2,3,4]

I Oops! No show function or equality.

User defined polymorphic datatypes

data Box a = MyBox a

I Examples

MyBox "Monday"

MyBox 2.5

MyBox [2,3,4]

I Oops! No show function or equality.

Box: 2nd attempt

data Box a = MyBox a

deriving (Eq, Show)

I Mybox 7 – works as expected.

I Mybox (++) — Runtime error!!

I Bad definition. Too generous with type a.

Box: 2nd attempt

data Box a = MyBox a

deriving (Eq, Show)

I Mybox 7 – works as expected.

I Mybox (++) — Runtime error!!

I Bad definition. Too generous with type a.

Box: 2nd attempt

data Box a = MyBox a

deriving (Eq, Show)

I Mybox 7 – works as expected.

I Mybox (++) — Runtime error!!

I Bad definition. Too generous with type a.

Box: 2nd attempt

data Box a = MyBox a

deriving (Eq, Show)

I Mybox 7 – works as expected.

I Mybox (++) — Runtime error!!

I Bad definition. Too generous with type a.

Box: 3rd attempt

data (Eq a, Show a) => Box a = MyBox a

deriving (Eq, Show)

I Mybox (++) is caught at compile time!

Box: 3rd attempt

data (Eq a, Show a) => Box a = MyBox a

deriving (Eq, Show)

I Mybox (++) is caught at compile time!

User defined polymorphic datatypes

I A polymorphic version of Shape

data Num a => (Shape a) =

Square a | Circle a | Rectangle a a

deriving (Eq, Ord, Show)

size :: Num a => Shape a -> a

size (Square x) = x

size (Circle r) = r

size (Rectangle l w) = l*w

I Square 3.0 :: (frac t) => Shape t

I Square 3 :: (Num t) => Shape t

User defined polymorphic datatypes

I A polymorphic version of Shape

data Num a => (Shape a) =

Square a | Circle a | Rectangle a a

deriving (Eq, Ord, Show)

size :: Num a => Shape a -> a

size (Square x) = x

size (Circle r) = r

size (Rectangle l w) = l*w

I Square 3.0 :: (frac t) => Shape t

I Square 3 :: (Num t) => Shape t

User defined polymorphic datatypes

I A polymorphic version of Shape

data Num a => (Shape a) =

Square a | Circle a | Rectangle a a

deriving (Eq, Ord, Show)

size :: Num a => Shape a -> a

size (Square x) = x

size (Circle r) = r

size (Rectangle l w) = l*w

I Square 3.0 :: (frac t) => Shape t

I Square 3 :: (Num t) => Shape t

User defined polymorphic datatypes

I A polymorphic version of Shape

data Num a => (Shape a) =

Square a | Circle a | Rectangle a a

deriving (Eq, Ord, Show)

size :: Num a => Shape a -> a

size (Square x) = x

size (Circle r) = r

size (Rectangle l w) = l*w

I Square 3.0 :: (frac t) => Shape t

I Square 3 :: (Num t) => Shape t

Recursive datatypes

data Mylist = Empty | Listof Int Mylist

I Representation of [1,3,2] is

list1 = Listof 1 (Listof 3 (Listof 2 Empty))

I myHead (Listof x rest) = x

I myTail (Listof x rest) = rest

myHead list1 = 1

myTail list1 = Listof 3 (Listof 2 Empty)

Recursive datatypes

data Mylist = Empty | Listof Int Mylist

I Representation of [1,3,2] is

list1 = Listof 1 (Listof 3 (Listof 2 Empty))

I myHead (Listof x rest) = x

I myTail (Listof x rest) = rest

myHead list1 = 1

myTail list1 = Listof 3 (Listof 2 Empty)

Recursive datatypes

data Mylist = Empty | Listof Int Mylist

I Representation of [1,3,2] is

list1 = Listof 1 (Listof 3 (Listof 2 Empty))

I myHead (Listof x rest) = x

I myTail (Listof x rest) = rest

myHead list1 = 1

myTail list1 = Listof 3 (Listof 2 Empty)

Recursive datatypes

data Mylist = Empty | Listof Int Mylist

I Representation of [1,3,2] is

list1 = Listof 1 (Listof 3 (Listof 2 Empty))

I myHead (Listof x rest) = x

I myTail (Listof x rest) = rest

myHead list1 = 1

myTail list1 = Listof 3 (Listof 2 Empty)

Recursive datatypes

data Mylist = Empty | Listof Int Mylist

I Representation of [1,3,2] is

list1 = Listof 1 (Listof 3 (Listof 2 Empty))

I myHead (Listof x rest) = x

I myTail (Listof x rest) = rest

myHead list1 = 1

myTail list1 = Listof 3 (Listof 2 Empty)

Recursive datatypes

data Mylist = Empty | Listof Int Mylist

I Representation of [1,3,2] is

list1 = Listof 1 (Listof 3 (Listof 2 Empty))

I myHead (Listof x rest) = x

I myTail (Listof x rest) = rest

myHead list1 = 1

myTail list1 = Listof 3 (Listof 2 Empty)

Recursive datatypes

data Mylist = Empty | Listof Int Mylist

I Representation of [1,3,2] is

list1 = Listof 1 (Listof 3 (Listof 2 Empty))

I myHead (Listof x rest) = x

I myTail (Listof x rest) = rest

myHead list1 = 1

myTail list1 = Listof 3 (Listof 2 Empty)

Recursive polymorphic types

I Making Mylist polymorphic is easy

data Mylist a = Empty | Listof a (Mylist a)

I Builtin lists: Empty is [], Listof is :

I Notice that the new type is Mylist a, not just Mylist

Recursive polymorphic types

I Making Mylist polymorphic is easy

data Mylist a = Empty | Listof a (Mylist a)

I Builtin lists: Empty is [], Listof is :

I Notice that the new type is Mylist a, not just Mylist

Recursive polymorphic types

I Making Mylist polymorphic is easy

data Mylist a = Empty | Listof a (Mylist a)

I Builtin lists: Empty is [], Listof is :

I Notice that the new type is Mylist a, not just Mylist

Recursive Datatypes: Example

I Drawing Software: xfig, ...

I A figure is a collection of objects that can be manipulated.

I An object is
I a shape like a line, a square, a rectangle ...
I or a compound object consisting of small objects

I How to represent a figure using an Haskell type?

Recursive Datatypes: Example

I Drawing Software: xfig, ...

I A figure is a collection of objects that can be manipulated.

I An object is
I a shape like a line, a square, a rectangle ...
I or a compound object consisting of small objects

I How to represent a figure using an Haskell type?

Recursive Datatypes: Example

I Drawing Software: xfig, ...

I A figure is a collection of objects that can be manipulated.

I An object is
I a shape like a line, a square, a rectangle ...

I or a compound object consisting of small objects

I How to represent a figure using an Haskell type?

Recursive Datatypes: Example

I Drawing Software: xfig, ...

I A figure is a collection of objects that can be manipulated.

I An object is
I a shape like a line, a square, a rectangle ...
I or a compound object consisting of small objects

I How to represent a figure using an Haskell type?

Recursive Datatypes: Example

I Drawing Software: xfig, ...

I A figure is a collection of objects that can be manipulated.

I An object is
I a shape like a line, a square, a rectangle ...
I or a compound object consisting of small objects

I How to represent a figure using an Haskell type?

Figures ...

I A point is a pair of integer coordinates.

type Point = (Int,Int)

I A line is given by its endpoints.

I A rectangle by its top-left and bottom-right coordinates.

data Figure = Figure [Object]

data Object = Line Point Point | Rect Point Point

| CompObject [Object]

f1 = Figure [Line (3,2) (3,6),Rect (0,0) (3,4),

CompObject [Line (0,0) (2,2),CompObject []]]

Figures ...

I A point is a pair of integer coordinates.

type Point = (Int,Int)

I A line is given by its endpoints.

I A rectangle by its top-left and bottom-right coordinates.

data Figure = Figure [Object]

data Object = Line Point Point | Rect Point Point

| CompObject [Object]

f1 = Figure [Line (3,2) (3,6),Rect (0,0) (3,4),

CompObject [Line (0,0) (2,2),CompObject []]]

Figures ...

I A point is a pair of integer coordinates.

type Point = (Int,Int)

I A line is given by its endpoints.

I A rectangle by its top-left and bottom-right coordinates.

data Figure = Figure [Object]

data Object = Line Point Point | Rect Point Point

| CompObject [Object]

f1 = Figure [Line (3,2) (3,6),Rect (0,0) (3,4),

CompObject [Line (0,0) (2,2),CompObject []]]

Figures ...

I A point is a pair of integer coordinates.

type Point = (Int,Int)

I A line is given by its endpoints.

I A rectangle by its top-left and bottom-right coordinates.

data Figure = Figure [Object]

data Object = Line Point Point | Rect Point Point

| CompObject [Object]

f1 = Figure [Line (3,2) (3,6),Rect (0,0) (3,4),

CompObject [Line (0,0) (2,2),CompObject []]]

Figures ...

I A point is a pair of integer coordinates.

type Point = (Int,Int)

I A line is given by its endpoints.

I A rectangle by its top-left and bottom-right coordinates.

data Figure = Figure [Object]

data Object = Line Point Point | Rect Point Point

| CompObject [Object]

f1 = Figure [Line (3,2) (3,6),Rect (0,0) (3,4),

CompObject [Line (0,0) (2,2),CompObject []]]

Figures ...

I A point is a pair of integer coordinates.

type Point = (Int,Int)

I A line is given by its endpoints.

I A rectangle by its top-left and bottom-right coordinates.

data Figure = Figure [Object]

data Object = Line Point Point | Rect Point Point

| CompObject [Object]

f1 = Figure [Line (3,2) (3,6),Rect (0,0) (3,4),

CompObject [Line (0,0) (2,2),CompObject []]]

Manipulating a figure

f1 = Figure [Line (3,2) (3,6),Rect (0,0) (3,4),

CompObject [Line (0,0) (2,2),CompObject []]]

I Count the number of objects in a given figure

fcount f1 = 3

fcount (Figure l) = length l

I Count the number of simple objects in a given figure.

scount f1 = 3

Manipulating a figure

f1 = Figure [Line (3,2) (3,6),Rect (0,0) (3,4),

CompObject [Line (0,0) (2,2),CompObject []]]

I Count the number of objects in a given figure

fcount f1 = 3

fcount (Figure l) = length l

I Count the number of simple objects in a given figure.

scount f1 = 3

Manipulating a figure

f1 = Figure [Line (3,2) (3,6),Rect (0,0) (3,4),

CompObject [Line (0,0) (2,2),CompObject []]]

I Count the number of objects in a given figure

fcount f1 = 3

fcount (Figure l) = length l

I Count the number of simple objects in a given figure.

scount f1 = 3

Manipulating a figure

f1 = Figure [Line (3,2) (3,6),Rect (0,0) (3,4),

CompObject [Line (0,0) (2,2),CompObject []]]

I Count the number of objects in a given figure

fcount f1 = 3

fcount (Figure l) = length l

I Count the number of simple objects in a given figure.

scount f1 = 3

Manipulating a figure

f1 = Figure [Line (3,2) (3,6),Rect (0,0) (3,4),

CompObject [Line (0,0) (2,2),CompObject []]]

I Count the number of objects in a given figure

fcount f1 = 3

fcount (Figure l) = length l

I Count the number of simple objects in a given figure.

scount f1 = 3

Counting simple objects

ocount :: Object -> Int

ocount (Line _ _) = 1

ocount (Rect _ _) = 1

ocount (CompObject l) = sum (map ocount l)

scount (Figure l) = ocount (CompObject l)

Organizing functions as Modules

I Organize functions into modules.

I Each module contains functions that are related to each other.

Organizing functions as Modules

I Organize functions into modules.

I Each module contains functions that are related to each other.

Sorting Module

I The name of the file must match the name of the module

module SortingFns where

insert :: Ord a => a -> [a] -> [a]

insert x [] = ...

...

isort :: Ord a => a -> [a] -> [a]

I To invoke functions from a module it must be imported

import SortingFns

isort [3,4,1,2,5]

Sorting Module

I The name of the file must match the name of the module

module SortingFns where

insert :: Ord a => a -> [a] -> [a]

insert x [] = ...

...

isort :: Ord a => a -> [a] -> [a]

I To invoke functions from a module it must be imported

import SortingFns

isort [3,4,1,2,5]

Sorting Module

I The name of the file must match the name of the module

module SortingFns where

insert :: Ord a => a -> [a] -> [a]

insert x [] = ...

...

isort :: Ord a => a -> [a] -> [a]

I To invoke functions from a module it must be imported

import SortingFns

isort [3,4,1,2,5]

Modules: Hiding some functions

I Helper functions such as insert, merge

... should not be revealed to the user

I Clearly separates functionality from details of implementation.

I Allows the modification of the implementation without
affecting other code.

The set of functions revealed constitutes the interface of that
module.

Modules: Hiding some functions

I Helper functions such as insert, merge

... should not be revealed to the user

I Clearly separates functionality from details of implementation.

I Allows the modification of the implementation without
affecting other code.

The set of functions revealed constitutes the interface of that
module.

Modules: Hiding some functions

I Helper functions such as insert, merge

... should not be revealed to the user

I Clearly separates functionality from details of implementation.

I Allows the modification of the implementation without
affecting other code.

The set of functions revealed constitutes the interface of that
module.

Modules: Hiding some functions

I Helper functions such as insert, merge

... should not be revealed to the user

I Clearly separates functionality from details of implementation.

I Allows the modification of the implementation without
affecting other code.

The set of functions revealed constitutes the interface of that
module.

Modules: Hiding some functions

I Helper functions such as insert, merge

... should not be revealed to the user

I Clearly separates functionality from details of implementation.

I Allows the modification of the implementation without
affecting other code.

The set of functions revealed constitutes the interface of that
module.

Modules: Hiding some functions

module SortingFns (isort,mergesort) where

insert :: Ord a => a -> [a] -> [a]

insert x [] = ...

...

isort :: Ord a => a -> [a] -> [a]

I Used as before

import SortingFns

isort [3,4,1,2,5]

Modules: Hiding some functions

module SortingFns (isort,mergesort) where

insert :: Ord a => a -> [a] -> [a]

insert x [] = ...

...

isort :: Ord a => a -> [a] -> [a]

I Used as before

import SortingFns

isort [3,4,1,2,5]

Modules: Hiding some functions

module SortingFns (isort,mergesort) where

insert :: Ord a => a -> [a] -> [a]

insert x [] = ...

...

isort :: Ord a => a -> [a] -> [a]

I Used as before

import SortingFns

isort [3,4,1,2,5]

A Calculator

I The traditional notation for expressions is called infix notation.

3+(5*8)

(2+3)-(7+2)

Operators appear between their arguments.

I Haskell allows prefix notation.

(+) 3 ((*) 5 8)

(-) ((+) 2 3) ((+) 7 2)

Operators appear before the arguments.

I Postfix notation places the operator after its arguments.

3 (5 8 *) +

(2 3 +) (7 2 +) -

I Do we need brackets in the postfix notation?

A Calculator

I The traditional notation for expressions is called infix notation.

3+(5*8)

(2+3)-(7+2)

Operators appear between their arguments.

I Haskell allows prefix notation.

(+) 3 ((*) 5 8)

(-) ((+) 2 3) ((+) 7 2)

Operators appear before the arguments.

I Postfix notation places the operator after its arguments.

3 (5 8 *) +

(2 3 +) (7 2 +) -

I Do we need brackets in the postfix notation?

A Calculator

I The traditional notation for expressions is called infix notation.

3+(5*8)

(2+3)-(7+2)

Operators appear between their arguments.

I Haskell allows prefix notation.

(+) 3 ((*) 5 8)

(-) ((+) 2 3) ((+) 7 2)

Operators appear before the arguments.

I Postfix notation places the operator after its arguments.

3 (5 8 *) +

(2 3 +) (7 2 +) -

I Do we need brackets in the postfix notation?

A Calculator

I The traditional notation for expressions is called infix notation.

3+(5*8)

(2+3)-(7+2)

Operators appear between their arguments.

I Haskell allows prefix notation.

(+) 3 ((*) 5 8)

(-) ((+) 2 3) ((+) 7 2)

Operators appear before the arguments.

I Postfix notation places the operator after its arguments.

3 (5 8 *) +

(2 3 +) (7 2 +) -

I Do we need brackets in the postfix notation?

A Calculator

I The traditional notation for expressions is called infix notation.

3+(5*8)

(2+3)-(7+2)

Operators appear between their arguments.

I Haskell allows prefix notation.

(+) 3 ((*) 5 8)

(-) ((+) 2 3) ((+) 7 2)

Operators appear before the arguments.

I Postfix notation places the operator after its arguments.

3 (5 8 *) +

(2 3 +) (7 2 +) -

I Do we need brackets in the postfix notation?

A Calculator

I The traditional notation for expressions is called infix notation.

3+(5*8)

(2+3)-(7+2)

Operators appear between their arguments.

I Haskell allows prefix notation.

(+) 3 ((*) 5 8)

(-) ((+) 2 3) ((+) 7 2)

Operators appear before the arguments.

I Postfix notation places the operator after its arguments.

3 (5 8 *) +

(2 3 +) (7 2 +) -

I Do we need brackets in the postfix notation?

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression

I If it is an operator, bracket it with the previous two expressions
to get a new expression.

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

3

5 8

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

3 5

8

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

3 5 8

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

3 (5 8 *)

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

(3 (5 8 *) +)

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

(3 (5 8 *) +)

I Here’s another example

2 3 + 7 2 + -

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

(3 (5 8 *) +)

I Here’s another example

2 3 + 7 2 + -

2

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

(3 (5 8 *) +)

I Here’s another example

2 3 + 7 2 + -

2 3

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

(3 (5 8 *) +)

I Here’s another example

2 3 + 7 2 + -

(2 3 +)

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

(3 (5 8 *) +)

I Here’s another example

2 3 + 7 2 + -

(2 3 +) 7

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

(3 (5 8 *) +)

I Here’s another example

2 3 + 7 2 + -

(2 3 +) 7 2

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

(3 (5 8 *) +)

I Here’s another example

2 3 + 7 2 + -

(2 3 +) (7 2 +)

Postfix without brackets

3 5 8 * +

I Every bracket-free expression can be converted uniquely into a
bracketed one.

I Scan from the left
I If it is a number it is a standalone expression
I If it is an operator, bracket it with the previous two expressions

to get a new expression.

(3 (5 8 *) +)

I Here’s another example

2 3 + 7 2 + -

((2 3 +) (7 2 +) -)

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4 + 2 - 5 6 + *

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4 + 2 - 5 6 + *

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4 + 2 - 5 6 + *

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4 + 2 - 5 6 + *

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4 + 2 - 5 6 + *

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4 + 2 - 5 6 +

*

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4 + 2

-

5 6 +

*

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4

+

2

-

5 6 +

*

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3

4

+

2

-

5 6 +

*

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4 +

2

-

5 6 +

*

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4 + 2 -

5 6 +

*

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4 + 2 -

5 6

+ *

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4 + 2 - 5

6

+ *

From infix to postfix

I Easy translation by induction on the structure of the
expression.

I A value is translated as it is.

I Any other expression is of the form (E1 op E2)

Translate E1 Translate E2 op

I Consider (((3+4)-2)*(5+6))

3 4 + 2 - 5 6 + *

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

3 5 8

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

3

5 8

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

3 5

8

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

3 (5 8 *)

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

3 40

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

(3 40 +)

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

2

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

2 3

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

(2 3 +)

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

5

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

5 7

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

5 7 2

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

5 (7 2 +)

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

5 9

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

(5 9 -)

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

-4

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

-4

Evaluating postfix expressions

I The structure of postfix expressions allows it to be evaluated
easily.

I Follow the bracketing algorithm, and evaluate each expression
as it is created.

3 5 8 * +

43

I Another example:

2 3 + 7 2 + -

-4

I Keep a stack of numbers.
I If you see a number, push it on to the stack.
I If you seen an operator, remove the top two elements from the

stack, evaluate and push the result on the stack.

Programming the calculator in Haskell

I The structure of the program:

I A module to manage stacks.

I A module that handles expressions and their evalutation.

Programming the calculator in Haskell

I The structure of the program:

I A module to manage stacks.

I A module that handles expressions and their evalutation.

Programming the calculator in Haskell

I The structure of the program:

I A module to manage stacks.

I A module that handles expressions and their evalutation.

The Stack module

I Methods Empty, push, pop and isempty.

I As general a type as possible for Stack.

data Stack a = Empty | Stack a (Stack a)

push :: a -> Stack a -> Stack a

push x st = Stack x st

pop :: Stack a -> (a, Stack a)

pop (Stack x st) = (x, st)

isempty :: Stack a -> Bool

isempty Empty = True

isempty _ = False

I It looks very much like a list!

The Stack module

I Methods Empty, push, pop and isempty.

I As general a type as possible for Stack.

data Stack a = Empty | Stack a (Stack a)

push :: a -> Stack a -> Stack a

push x st = Stack x st

pop :: Stack a -> (a, Stack a)

pop (Stack x st) = (x, st)

isempty :: Stack a -> Bool

isempty Empty = True

isempty _ = False

I It looks very much like a list!

The Stack module

I Methods Empty, push, pop and isempty.

I As general a type as possible for Stack.

data Stack a = Empty | Stack a (Stack a)

push :: a -> Stack a -> Stack a

push x st = Stack x st

pop :: Stack a -> (a, Stack a)

pop (Stack x st) = (x, st)

isempty :: Stack a -> Bool

isempty Empty = True

isempty _ = False

I It looks very much like a list!

The Stack module

I Methods Empty, push, pop and isempty.

I As general a type as possible for Stack.

data Stack a = Empty | Stack a (Stack a)

push :: a -> Stack a -> Stack a

push x st = Stack x st

pop :: Stack a -> (a, Stack a)

pop (Stack x st) = (x, st)

isempty :: Stack a -> Bool

isempty Empty = True

isempty _ = False

I It looks very much like a list!

The Stack module via lists

data Stack a = Stack [a]

push :: a -> Stack a -> Stack a

push x (Stack ls) = Stack (x:ls)

pop :: Stack a -> (a, Stack a)

pop (Stack (x:ls)) = (x, Stack ls)

isempty :: Stack a -> Bool

isempty (Stack []) = True

isempty _ = False

I Must add function empty :: Stack a.

empty = Stack []

I Must add this function to the earlier definition to hide the
implementation details.

The Stack module via lists

data Stack a = Stack [a]

push :: a -> Stack a -> Stack a

push x (Stack ls) = Stack (x:ls)

pop :: Stack a -> (a, Stack a)

pop (Stack (x:ls)) = (x, Stack ls)

isempty :: Stack a -> Bool

isempty (Stack []) = True

isempty _ = False

I Must add function empty :: Stack a.

empty = Stack []

I Must add this function to the earlier definition to hide the
implementation details.

The Stack module via lists

data Stack a = Stack [a]

push :: a -> Stack a -> Stack a

push x (Stack ls) = Stack (x:ls)

pop :: Stack a -> (a, Stack a)

pop (Stack (x:ls)) = (x, Stack ls)

isempty :: Stack a -> Bool

isempty (Stack []) = True

isempty _ = False

I Must add function empty :: Stack a.

empty = Stack []

I Must add this function to the earlier definition to hide the
implementation details.

The Stack module via lists

data Stack a = Stack [a]

push :: a -> Stack a -> Stack a

push x (Stack ls) = Stack (x:ls)

pop :: Stack a -> (a, Stack a)

pop (Stack (x:ls)) = (x, Stack ls)

isempty :: Stack a -> Bool

isempty (Stack []) = True

isempty _ = False

I Must add function empty :: Stack a.

empty = Stack []

I Must add this function to the earlier definition to hide the
implementation details.

