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Complexity

◮ We can take the complexity T (n) on inputs of length n to be

◮ The maximum among all inputs of length n.
Worst-case complexity
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Measuring efficiency in Haskell . . .

◮ What is the complexity of reverse?
reverse [] = []

reverse (x:xs) = (reverse xs) ++ [x]

◮ Write a recurrence for T (n)

T (0) = 1

T (n) = T (n−1) + n

◮ Expand and solve

T (n) = T (n−1) + n

= (T (n−2) + n−1) + n

= (T (n−3) + n−2) + n−1 + n

= · · ·

= T (0) + 1 + 2 + · · ·+ n

= 1 + 1 + 2 + · · ·+ n

= n(n + 1)/2 + 1



The Big-O notation

◮ The exact value of T (n) is not as interesting as its asymptotic
behaviour.
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The Big-O notation

◮ The exact value of T (n) is not as interesting as its asymptotic
behaviour.

◮ Instead of a complex function giving the exact value of T (n)
we will be happy with a simple function that is close to T (n),
but dominates it.

Remember that we are interested in the worst-case analysis.

Example: We will be happy to write T (n) = n2 instead of
n(n−1)

2 + 1.

◮ The Big-O notation is a formal treatment of this idea of
bounding by a nice function.
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The Big-O notation

◮ f (n) = O(g(n)) iff there are constants k and M such that

f (n) ≤ k .g(n) for any n > M

◮ Here are some examples:
n(n−1)

2 + 1 = O(n2)

n(n−1)
2 + 1 = O(n4)

n2 = O(n(n−1)
2 + 1)

We will seldom use such a relation though!

n.logn + n = O(n.logn)

an2 + bn.logn + cn + d = O(n2)
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Complexity of Insertion Sorting

insert Int -> [Int] -> [Int]

insert x [] = [x]

insert x (y:ys)

| (x <= y) = x:y:ys

| otherwise = y : insert x ys

The complexity of insert is O(n).

◮ Complexity of insertion sorting:

isort [] = []

isort (x:xs) = insert x (isort xs)

T (n) = (n − 1) + T (n − 1) and T (0) = 1

◮ This is the same recurrence as for reverse and so

T (n) = n(n−1)
2 = O(n2)
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Merge: Complexity

merge [] l = l

merge l [] = l

merge (x:xs) (y:ys)

| (x < y) = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

◮ Let n be the sum of the lengths of the two lists. Then

T (n) = 1 + T (n − 1)

Thus, T (n) = n.
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Mergesorting: Complexity

mergesort :: [Int] -> [Int]

mergesort [] = []

mergesort [x] = [x]

mergesort l = merge (mergesort fhalf)

(mergesort shalf)

where

fhalf = take n l

shalf = drop n l

n = div (length l) 2

◮ T (0) = T (1) = 1 and

◮ T (n) = 2.T (n/2) + n + n + 1

◮ Let us solve the recurrence T (n) = 2.T (n/2) + c .n + d with
T (1) = 1
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T (n) ≤ c .n.log2(n) + (2.d)n

◮ Thus T (n) = O(n.logn).
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Complexity of Quicksort

quicksort :: [Int] -> [Int]

quicksort [] = []

quicksort (x:xs) = (quicksort lower) ++

[splitter] ++

(quicksort upper)

where

splitter = x

lower = filter (<= x) xs

upper = filter (> x) xs

◮ If the splitter is always the median, the recurrence is

T (n) = 2.T (n/2) + c .n + d

◮ If the splitter is always the smallest (or largest) element then
the recurrence is

T (n) = T (n − 1) + c .n

◮ Thus the worst case complexity of Quicksort is O(n2).
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Sorting by keys

◮ Student names and Marks.

◮ maintain names and marks of a group of students
◮ list of pairs (name,marks) where

name::String and marks::Int

◮ What if we want the list of students sorted by marks?

◮ Equip isort with a function to pick up the key.

isort f [] = []

isort f (x:xs) = insert f x (isort f xs)

insert f x [] = [x]

insert f x (y:ys)

| (f x) < (f y) = x:y:ys

| otherwise = y:(insert f x ys)

◮ isort snd [("Nikhil", 75), ("Lavanya", 71)]
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Stable sorting

◮ Sort by marks . . .

. . . and students with the same marks should be sorted
alphabetically by name

isort snd ( isort fst [("Nikhil",75), ("Lavanya",71),

("Anirudha",70), ("Ananya",75), ("Badri",70)] )

◮ Does not work!

◮ isort messes around the order between equal elements!

◮ A sorting algorithm is stable if relative order of equal elements
is left unaltered.
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Stable Sorting

◮ It is easy to turn isort into a stable sort.

isort f [] = []

isort f (x:xs) = insert f x (isort f xs)

insert f x [] = [x]

insert f x (y:ys)

| (f x) <= (f y) = x:y:ys

| otherwise = y:(insert f x ys)

◮ With a similar change mergesort can also be made stable.

◮ Same with quicksort



minout

◮ minout :: [Int] -> Int

minout l is the minimum nonnegative number not in l

assuming that all elements in l are nonnegative and distinct.

◮ minout [3,1,2] = 0
◮ minout [1,5,3,0,2] = 4
◮ minout [11,5,3,0] = 1

◮ How do we compute minout?



minout: direct solution

◮ Here is one way to do this:



minout: direct solution

◮ Here is one way to do this:

minoutAux i l

| (elem i l) = minoutAux (i+1) l

| otherwise = i

minout l = minoutAux 0 l



minout: direct solution

◮ Here is one way to do this:

minoutAux i l

| (elem i l) = minoutAux (i+1) l

| otherwise = i

minout l = minoutAux 0 l

◮ What is the complexity of this program?



minout: direct solution

◮ Here is one way to do this:

minoutAux i l

| (elem i l) = minoutAux (i+1) l

| otherwise = i

minout l = minoutAux 0 l

◮ What is the complexity of this program?

◮ Observe that the answer lies within 0 ... length(l).



minout: direct solution

◮ Here is one way to do this:

minoutAux i l

| (elem i l) = minoutAux (i+1) l

| otherwise = i

minout l = minoutAux 0 l

◮ What is the complexity of this program?

◮ Observe that the answer lies within 0 ... length(l).
◮ So, minoutAux i l is evaluated for at most n+1 values of i



minout: direct solution

◮ Here is one way to do this:

minoutAux i l

| (elem i l) = minoutAux (i+1) l

| otherwise = i

minout l = minoutAux 0 l

◮ What is the complexity of this program?

◮ Observe that the answer lies within 0 ... length(l).
◮ So, minoutAux i l is evaluated for at most n+1 values of i
◮ Each evaluation takes O(n) steps (since elem takes O(n)

steps).



minout: direct solution

◮ Here is one way to do this:

minoutAux i l

| (elem i l) = minoutAux (i+1) l

| otherwise = i

minout l = minoutAux 0 l

◮ What is the complexity of this program?

◮ Observe that the answer lies within 0 ... length(l).
◮ So, minoutAux i l is evaluated for at most n+1 values of i
◮ Each evaluation takes O(n) steps (since elem takes O(n)

steps).

◮ Thus this program takes O(n2) steps.
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minout via sorting

◮ Here is another way to solve the problem.
◮ Sort the list in ascending order.
◮ zip it with the list [0,1,...,(length l)-1]
◮ Find the first pair in this list of pairs which is unequal values

and report the second component.

minout l = funequal (zip (sort l) [0..(length l)])

funequal ((x,y):ls)

| (x /= y) = y

| otherwise = funequal ls

◮ Fix this to work when the answer is length l.

What is the complexity of this function?

O(n.logn) + O(n) = O(n.logn)
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The Divide and Conquer Solution

◮ Construct two lists
◮ fhalf containing all the elements smaller than

(length l) ‘div‘ 2
◮ shalf containing all the elements at least as big as

(length l) ‘div‘ 2

◮ Check if (length fhalf) == (length l) ‘div‘ 2

◮ If no, answer lies in first half
◮ If yes, answer lies in second half
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| (x==0) = 1

| otherwise = 0
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minout [] = 0

minout [x]

| (x==0) = 1

| otherwise = 0

minout l

| length fhalf < m = minout fhalf

| otherwise = m + minout (shift m shalf)

where

m = div (length l) 2

fhalf = filter (< m) l

shalf = filter (>= m) l

shift i [] = []

shift i (x:xs) = (x-i) : shift i xs

◮ What is its complexity?

◮ T(n) = T(n/2) + c.n
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Complexity of minout

T (n) = T (n/2) + c .n

= T (n/4) + c .n/2 + c .n

= T (n/8) + c .n/4 + c .n/2 + c .n

...

= T (n/2logn) + c .1 + . . . c .n/4 + c .n/2 + c .n

= d .n = O(n)

Divide and Conquer need not always work. See lecture notes.
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Testing if a number is prime

◮ Check if a given number n is a prime.

◮ Naive algorithm:

prime n = and (map f [1..(div n 2)])

where

f i = ((n mod i) /= 0)

◮ This function takes O(n) to decide if n is a prime.

◮ Is this an efficient algorithm?

◮ Is it efficient to take 264 steps to decide if a 64 bit number is
prime?

◮ The size of the input is the number of bits required to write it
down.

◮ The above algorithm is takes 2n steps to decide if a number of
size n is prime.


