
Introduction to Programming: Lecture 12

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

17 Sep 2013

http://www.cmi.ac.in/~kumar


Binary Search Trees

◮ The complexity of all the operations depend on the height of
the tree.



Binary Search Trees

◮ The complexity of all the operations depend on the height of
the tree.

◮ In general, a search tree will not be balanced



Binary Search Trees

◮ The complexity of all the operations depend on the height of
the tree.

◮ In general, a search tree will not be balanced

◮ Inserting values in ascending or descending order results in
highly skewed tree

6

/

5

/

4

/

3

/

2

/

1



Height-balanced trees

◮ Maintain height balanced trees instead of size-balanced trees.

Height of left subtree and height of right subtree differ by at
most one at any node.

4

/ \

2 5

/ \

1 3



Height-balanced trees

◮ Maintain height balanced trees instead of size-balanced trees.

Height of left subtree and height of right subtree differ by at
most one at any node.

4

/ \

2 5

/ \

1 3

◮ Height is still logarithmic in size [Adelson-Velskii, Landis]

◮ Somewhat easier to maintain.



Height Balanced trees . . .

◮ Use tree rotations to maintain height balance



Height Balanced trees . . .

◮ Use tree rotations to maintain height balance

◮ Example: rotate right

x

y

t1 t2

t3 ⇒

y

x

t1

t2 t3



Height Balanced trees . . .

◮ Use tree rotations to maintain height balance

◮ Example: rotate right

x

y

t1 t2

t3 ⇒

y

x

t1

t2 t3

◮ Useful if t1 has large height.



Height Balanced trees . . .

◮ Use tree rotations to maintain height balance

◮ Example: rotate right

x

y

t1 t2

t3 ⇒

y

x

t1

t2 t3

◮ Useful if t1 has large height.

◮ rotateright (Node (Node t1 y t2) x t3) =

Node t1 y (Node t2 x t3)



Balanced search trees . . .

◮ Use tree rotations to maintain height balance

◮ Example: rotate left

x

y

t1 t2

t3 ⇐

y

x

t1

t2 t3

◮ Useful if t3 has large height.



Balanced search trees . . .

◮ Use tree rotations to maintain height balance

◮ Example: rotate left

x

y

t1 t2

t3 ⇐

y

x

t1

t2 t3

◮ Useful if t3 has large height.

◮ rotateleft (Node t1 y (Node t2 x t3)) =

Node (Node t1 y t2) x t3



Balanced search trees . . .

◮ Assume tree is currently balanced

◮ Each inserttree or deletetree operation creates limited
imbalance



Balanced search trees . . .

◮ Assume tree is currently balanced

◮ Each inserttree or deletetree operation creates limited
imbalance

◮ Fix imbalance using rebalance (to be written!)



Balanced search trees . . .

◮ Assume tree is currently balanced

◮ Each inserttree or deletetree operation creates limited
imbalance

◮ Fix imbalance using rebalance (to be written!)

◮ Assuming rebalance exists, we can write

inserttree :: Ord a => Stree a -> a -> Stree

inserttree Nil x = Node Nil x Nil

inserttree (Node tl y tr) x

| x == y = Node tl y tr

| x < y = rebalance (Node (inserttree tl x) y

tr)

| otherwise = rebalance (Node tl y

(inserttree tr x))



Rebalancing search trees

◮ Define slope (Node t1 x t2) =
(height t1) - (height t2)



Rebalancing search trees

◮ Define slope (Node t1 x t2) =
(height t1) - (height t2)

◮ In a height balanced tree, slope is -1, 0 or 1



Rebalancing search trees

◮ Define slope (Node t1 x t2) =
(height t1) - (height t2)

◮ In a height balanced tree, slope is -1, 0 or 1
◮ After inserting/deleting, slopes can be -2,-1, 0, 1 or 2.

Violation happens only at nodes visited by the operation.



Rebalancing search trees

◮ Define slope (Node t1 x t2) =
(height t1) - (height t2)

◮ In a height balanced tree, slope is -1, 0 or 1
◮ After inserting/deleting, slopes can be -2,-1, 0, 1 or 2.

Violation happens only at nodes visited by the operation.

◮ We need to rebalance nodes whose slopes are -2 or 2
(and further assume that the sub-trees below are balanced)



Rebalancing search trees

◮ Define slope (Node t1 x t2) =
(height t1) - (height t2)

◮ In a height balanced tree, slope is -1, 0 or 1
◮ After inserting/deleting, slopes can be -2,-1, 0, 1 or 2.

Violation happens only at nodes visited by the operation.

◮ We need to rebalance nodes whose slopes are -2 or 2
(and further assume that the sub-trees below are balanced)

◮ We consider the case where slope is 2

◮ Slope -2 is symmetric



Rebalancing a node with slope 2

◮ Two cases

◮ Slope at root of left subtree is 0 or 1
◮ Slope at root of left subtree is -1



Rebalancing a node with slope 2

◮ Two cases

◮ Slope at root of left subtree is 0 or 1
◮ Slope at root of left subtree is -1

◮ Case 1:

x

y

t1

h+1

t2

h or h+1

t3

h



Rebalancing a node with slope 2

◮ Two cases

◮ Slope at root of left subtree is 0 or 1
◮ Slope at root of left subtree is -1

◮ Case 1: Rotate right

x

y

t1

h+1

t2

h or h+1

t3

h

⇒

y

x

t1

h+1
t2

h or h+1

t3

h



Rebalancing a node with slope 2 . . .

◮ Case 2: Slope at root of left subtree is -1



Rebalancing a node with slope 2 . . .

◮ Case 2: Slope at root of left subtree is -1

x

y

t1

h

t2

h+1

t3

h



Rebalancing a node with slope 2 . . .

◮ Case 2: Slope at root of left subtree is -1

◮ Expand t2

x

y

z

t1

h
t21

h / h−1

t22

h / h−1

t3

h



Rebalancing a node with slope 2 . . .

◮ Case 2: Slope at root of left subtree is -1

◮ Expand t2
◮ Rotate left at y—note that z may now be unbalanced

x

y

z

t1

h

t21

h / h−1

t22

h / h−1

t3

h



Rebalancing a node with slope 2 . . .

◮ Case 2: Slope at root of left subtree is -1

◮ Expand t2
◮ Rotate left at y—note that z may now be unbalanced
◮ Right rotate at x—now z must be balanced

z

xy

t1

h

t21

h / h−1

t22

h / h−1

t3

h



The rebalance function

rebalance :: Ord a => Stree a -> Stree a

rebalance (Node t1 y t2)

| abs (sy) < 2 = Node t1 y t2

-- Slope = 2

| sy == 2 && st1 /= -1 = rotateright (Node t1 y t2)

| sy == 2 && st1 == -1 =

rotateright (Node (rotateleft t1) y t2)

...

where

sy = slope (Node t1 y t2)

st1 = slope t1

...



Computing the slope

◮ How do we compute slope?



Computing the slope

◮ How do we compute slope?

◮ Naively

slope :: Stree a -> Int

slope Nil = 0

slope (Node t1 x t2) = (height t1) - (height t2)



Computing the slope

◮ How do we compute slope?

◮ Naively

slope :: Stree a -> Int

slope Nil = 0

slope (Node t1 x t2) = (height t1) - (height t2)

◮ To compute height, we examine each node in the tree

◮ Computing slope proportional to size, not height!



Balanced search trees ...

◮ Instead, store height at each node

◮ Modify definition of Stree to add an extra Int to record
height

data Ord a =>

BStree a = Nil | Node (BStree a) a Int (BStree a)

deriving (Eq,Show)



Balanced search trees ...

◮ Instead, store height at each node

◮ Modify definition of Stree to add an extra Int to record
height

data Ord a =>

BStree a = Nil | Node (BStree a) a Int (BStree a)

deriving (Eq,Show)

◮ Now, computing height and slope takes constant time

height Nil = 0

height (Node t1 x m t2) = m

slope Nil = 0

slope (Node t1 x m t2) = (height t1) - (height t2)



Insertion

inserttree :: Ord a => BStree a -> a -> BStree a

inserttree Nil x = Node Nil x 1 Nil

inserttree (Node tl y h tr) x

| x == y = Node tl y h tr

| x < y = rebalance (Node ntl y nhl tr)

| otherwise = rebalance (Node tl y nhr ntr)

where

ntl = inserttree tl x

nhl = 1 + max (height ntl) (height tr)

ntr = inserttree tr x

nhr = 1 + max (height tl) (height ntr)



Deletion

deletetree :: Ord a => BStree a -> a -> BStree a

deletetree Nil x = Nil

deletetree (Node tl y h tr) x

| x < y = rebalance (Node ntl y nhl tr)

| x > y = rebalance (Node tl y nhr ntr)

where

ntl = deletetree tl x

nhl = 1 + max (height ntl) (height tr)

ntr = deletetree tr x

nhr = 1 + max (height tl) (height ntr)

Cont’d ...



Deletion ...

-- In all cases below, we must have x == y

deletetree (Node Nil y h tr) x = tr

deletetree (Node tl y h tr) x =

rebalance (Node tz z nh tr)

where

(z,tz) = deletemax tl

nh = 1 + max (height tz) (height tr)



Deletemax

deletemax :: Ord a => BStree a -> (a,BStree a)

deletemax (Node tl y h Nil) = (y,tl)

deletemax (Node tl y h tr) =

(z, rebalance (Node tl y nh tz))

where

(z,tz) = deletemax tr

nh = 1 + max (height tl) (height tz)



Searching

searchtree :: Ord a => BStree a -> a -> Bool

searchtree Nil v = False

searchtree (Node tl y h tr) v

| v == y = True

| v < y = searchtree tl v

| v > y = searchtree tr v



Rebalance:

rebalance :: Ord a => Stree a -> Stree a

rebalance (Node t1 y h t2)

| abs (sy) < 2 = Node t1 y h t2

| sy == 2 && st1 /= -1 = rotateright (Node t1 y h t2)

| sy == 2 && st1 == -1 =

rotateright (Node (rotateleft t1) y nya t2)

...

where

sy = slope (Node t1 y h t2)

nya = 1 + max (height t2) (height (rotateleft t1))

st1 = slope t1

...



Rotations

rotateright (Node (Node t1 y hy t2) x hx t3) =

Node t1 y nhy (Node t2 x nhx t3)

where

nhx = 1 + max (height t2) (height t3)

nhy = 1 + max (height t1) nhx

...



Anonymous Functions

◮ So far, every Haskell function had a name.



Anonymous Functions

◮ So far, every Haskell function had a name.

◮ Anonymous functions are functions without names.



Anonymous Functions

◮ So far, every Haskell function had a name.

◮ Anonymous functions are functions without names.

◮ Useful, for instance, if a function is needed just once.



Anonymous Functions

◮ So far, every Haskell function had a name.

◮ Anonymous functions are functions without names.

◮ Useful, for instance, if a function is needed just once.

\x -> (head (tail x))



Anonymous Functions

◮ So far, every Haskell function had a name.

◮ Anonymous functions are functions without names.

◮ Useful, for instance, if a function is needed just once.

\x -> (head (tail x))

◮ The \x is to be read as lambda x and comes from λ-Calculus.



Anonymous Functions

◮ So far, every Haskell function had a name.

◮ Anonymous functions are functions without names.

◮ Useful, for instance, if a function is needed just once.

\x -> (head (tail x))

◮ The \x is to be read as lambda x and comes from λ-Calculus.

◮ Writing ...

allseconds = map (\x -> head (tail x))



Anonymous Functions

◮ So far, every Haskell function had a name.

◮ Anonymous functions are functions without names.

◮ Useful, for instance, if a function is needed just once.

\x -> (head (tail x))

◮ The \x is to be read as lambda x and comes from λ-Calculus.

◮ Writing ...

allseconds = map (\x -> head (tail x))

... is better than writing

allseconds = map second

where

second x = head (tail x)



Functional Composition

◮ Composing functions is a natural operation.

second x = head (tail x)



Functional Composition

◮ Composing functions is a natural operation.

second x = head (tail x)

◮ Given f :: a -> b and g :: b -> c their composition is
defined in Haskell using the . operator:

g.f :: a -> c

(g.f) x = g (f x)



Functional Composition

◮ Composing functions is a natural operation.

second x = head (tail x)

◮ Given f :: a -> b and g :: b -> c their composition is
defined in Haskell using the . operator:

g.f :: a -> c

(g.f) x = g (f x)

◮ second = head.tail



Functional Composition

◮ Composing functions is a natural operation.

second x = head (tail x)

◮ Given f :: a -> b and g :: b -> c their composition is
defined in Haskell using the . operator:

g.f :: a -> c

(g.f) x = g (f x)

◮ second = head.tail

◮ . is a function like any other in Haskell and can be easily
defined.



Functional Composition

◮ Composing functions is a natural operation.

second x = head (tail x)

◮ Given f :: a -> b and g :: b -> c their composition is
defined in Haskell using the . operator:

g.f :: a -> c

(g.f) x = g (f x)

◮ second = head.tail

◮ . is a function like any other in Haskell and can be easily
defined.

◮ What is its type?



Examples

◮ Here is a more elaborate example that counts the number of
words that begin with a captial letter:



Examples

◮ Here is a more elaborate example that counts the number of
words that begin with a captial letter:

◮ words :: String -> [String] returns the words in the
given String



Examples

◮ Here is a more elaborate example that counts the number of
words that begin with a captial letter:

◮ words :: String -> [String] returns the words in the
given String

capcount = length . filter (isUpper.head) . words



The if-then-else function

◮ The if-then-else construct works as one expects it to:



The if-then-else function

◮ The if-then-else construct works as one expects it to:

if b then e1 else e2

If the value of b, a boolean expression, is True then the value
of the expression is e1 else e2



The if-then-else function

◮ The if-then-else construct works as one expects it to:

if b then e1 else e2

If the value of b, a boolean expression, is True then the value
of the expression is e1 else e2

fact n = if (n==0) 1 else (fact (n-1))*n



The let construct

◮ Allows for the introduction of local names much as the where
command does.



The let construct

◮ Allows for the introduction of local names much as the where
command does.

let f x = x*x in

map f [1,2,3]



The let construct

◮ Allows for the introduction of local names much as the where
command does.

let f x = x*x in

map f [1,2,3]

◮ There are differences betweeen let and where but we do not
discuss them here.


