
Introduction to Programming: Lecture 11

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

12 Sep 2013

http://www.cmi.ac.in/~kumar


The binary tree datatype



The binary tree datatype

data Btree a = Nil | Node (Btree a) a (Btree a)



The binary tree datatype

data Btree a = Nil | Node (Btree a) a (Btree a)

◮ Nil and Node are the constructors.



The binary tree datatype

data Btree a = Nil | Node (Btree a) a (Btree a)

◮ Nil and Node are the constructors.

Node (Node Nil 4 Nil) 6

(Node (Node Nil 2 Nil) 3 (Node Nil 5 Nil))



The binary tree datatype

data Btree a = Nil | Node (Btree a) a (Btree a)

◮ Nil and Node are the constructors.

Node (Node Nil 4 Nil) 6

(Node (Node Nil 2 Nil) 3 (Node Nil 5 Nil))

6

/ \

4 3

/ \

2 5



Levels

◮ List nodes level by level and from left to right within each
level.

4

/ \

2 5

/ \

1 3



Levels

◮ List nodes level by level and from left to right within each
level.

4

/ \

2 5

/ \

1 3

[4,2,5,1,3]



Levels

◮ List nodes level by level and from left to right within each
level.

4

/ \

2 5

/ \

1 3

[4,2,5,1,3]

mylevels: Btree a -> [[a]]

mylevels Nil = []

mylevels (Node tl x tr) =

[x]:(join (mylevels tl) (mylevels tr))

level t = concat (mylevels t)



Levels

◮ List nodes level by level and from left to right within each
level.

4

/ \

2 5

/ \

1 3

[4,2,5,1,3]

mylevels: Btree a -> [[a]]

mylevels Nil = []

mylevels (Node tl x tr) =

[x]:(join (mylevels tl) (mylevels tr))

level t = concat (mylevels t)



Search trees

◮ In a search tree

◮ Values in the left subtree are smaller than the current node
◮ Values in the right subtree are bigger than the current node



Search trees

◮ In a search tree

◮ Values in the left subtree are smaller than the current node
◮ Values in the right subtree are bigger than the current node

◮ Two search trees for values [1,2,3,4,5,7]

4 3

/ \ / \

2 5 2 5

/ \ \ / / \

1 3 7 1 4 7



Search trees

◮ In a search tree

◮ Values in the left subtree are smaller than the current node
◮ Values in the right subtree are bigger than the current node

◮ Two search trees for values [1,2,3,4,5,7]

4 3

/ \ / \

2 5 2 5

/ \ \ / / \

1 3 7 1 4 7

◮ Search Trees in Haskell

data Ord a => Stree a = Nil | Node (Stree a) a (Stree a)

deriving (Eq, Show)



Search trees

◮ In a search tree

◮ Values in the left subtree are smaller than the current node
◮ Values in the right subtree are bigger than the current node

◮ Two search trees for values [1,2,3,4,5,7]

4 3

/ \ / \

2 5 2 5

/ \ \ / / \

1 3 7 1 4 7

◮ Search Trees in Haskell

data Ord a => Stree a = Nil | Node (Stree a) a (Stree a)

deriving (Eq, Show)

◮ Need Ord a to compare values
◮ No gurantee of being a search tree!



Search trees ...

◮ Is it a search tree?



Search trees ...

◮ Is it a search tree?

isstree:: Ord a => (Stree a) -> Bool

isstree Nil = True

isstree (Node tl y tr)

= (isstree tl) && (isstree tr) &&

(maxt tl < y) && (y < (mint tr))



Search trees ...

◮ Is it a search tree?

isstree:: Ord a => (Stree a) -> Bool

isstree Nil = True

isstree (Node tl y tr)

= (isstree tl) && (isstree tr) &&

(maxt tl < y) && (y < (mint tr))

mint (Node Nil v Nil) = v

mint (Node tl v tr) = min (mint tl) (min v (mint tr))



Search trees ...

◮ Is it a search tree?

isstree:: Ord a => (Stree a) -> Bool

isstree Nil = True

isstree (Node tl y tr)

= (isstree tl) && (isstree tr) &&

(maxt tl < y) && (y < (mint tr))

mint (Node Nil v Nil) = v

mint (Node tl v tr) = min (mint tl) (min v (mint tr))

◮ In how many ways is the above program incorrect?



Search trees . . .

◮ Searching for a value

41

23 51

17 34 62



Search trees . . .

◮ Searching for a value
Searching for 34

41

23 51

17 34 62



Search trees . . .

◮ Searching for a value
Searching for 34

41

23 51

17 34 62

41



Search trees . . .

◮ Searching for a value
Searching for 34

41

23 51

17 34 62

23



Search trees . . .

◮ Searching for a value
Searching for 34

41

23 51

17 34 6234
√



Search trees . . .

◮ Searching for a value
Searching for 49

41

23 51

17 34 62



Search trees . . .

◮ Searching for a value
Searching for 49

41

23 51

17 34 62

41



Search trees . . .

◮ Searching for a value
Searching for 49

41

23 51

17 34 62

51



Search trees . . .

◮ Searching for a value
Searching for 49

41

23 51

17 34 62×



Search trees . . .

◮ Searching for a value v



Search trees . . .

◮ Searching for a value v

◮ Start at the root



Search trees . . .

◮ Searching for a value v

◮ Start at the root

◮ At each node



Search trees . . .

◮ Searching for a value v

◮ Start at the root

◮ At each node

◮ If the value is found, report Yes



Search trees . . .

◮ Searching for a value v

◮ Start at the root

◮ At each node

◮ If the value is found, report Yes

◮ If v is smaller than the current value

◮ If left child exists, search for v in left subtree
◮ Otherwise, report No



Search trees . . .

◮ Searching for a value v

◮ Start at the root

◮ At each node

◮ If the value is found, report Yes

◮ If v is smaller than the current value

◮ If left child exists, search for v in left subtree
◮ Otherwise, report No

◮ If v is larger than the current value

◮ If right child exists, search for v in right subtree
◮ Otherwise, report No



Search trees . . .

◮ Searching for a value v

◮ Start at the root

◮ At each node

◮ If the value is found, report Yes

◮ If v is smaller than the current value

◮ If left child exists, search for v in left subtree
◮ Otherwise, report No

◮ If v is larger than the current value

◮ If right child exists, search for v in right subtree
◮ Otherwise, report No

◮ Worst case: Number of steps is equal to the longest path
from the root to a leaf



Search trees . . .

◮ Searching for a value

searchtree :: Ord a => (Stree a) -> a -> Bool

searchtree Nil v = False

searchtree (Node tl y tr) v

| v == y = True

| v < y = searchtree tl v

| otherwise = searchtree tr v



Search trees, inserting a value

◮ Insert a value

41

23 51

17 34 62



Search trees, inserting a value

◮ Insert a value
Insert 33

41

23 51

17 34 62



Search trees, inserting a value

◮ Insert a value
Insert 33

41

23 51

17 34 62

41



Search trees, inserting a value

◮ Insert a value
Insert 33

41

23 51

17 34 62

23



Search trees, inserting a value

◮ Insert a value
Insert 33

41

23 51

17 34 6234



Search trees, inserting a value

◮ Insert a value
Insert 33

41

23 51

17 34 62

33



Search trees, inserting a value

◮ Insert a value
Insert 48

41

23 51

17 34 62

33



Search trees, inserting a value

◮ Insert a value
Insert 48

41

23 51

17 34 62

33

41



Search trees, inserting a value

◮ Insert a value
Insert 48

41

23 51

17 34 62

33

51



Search trees, inserting a value

◮ Insert a value
Insert 48

41

23 51

17 34 62

33

48



Search trees, inserting a value

◮ Insert a value
Insert 17

41

23 51

17 34 62

33

48



Search trees, inserting a value

◮ Insert a value
Insert 17

41

23 51

17 34 62

33

48

41



Search trees, inserting a value

◮ Insert a value
Insert 17

41

23 51

17 34 62

33

48

23



Search trees, inserting a value

◮ Insert a value
Insert 17

41

23 51

17 34 62

33

4817



Search trees, inserting a value . . .

◮ To insert a value v , find where it should be and add it if it is
missing



Search trees, inserting a value . . .

◮ To insert a value v , find where it should be and add it if it is
missing

◮ Start at the root



Search trees, inserting a value . . .

◮ To insert a value v , find where it should be and add it if it is
missing

◮ Start at the root

◮ At each node



Search trees, inserting a value . . .

◮ To insert a value v , find where it should be and add it if it is
missing

◮ Start at the root

◮ At each node

◮ If the value is found, exit



Search trees, inserting a value . . .

◮ To insert a value v , find where it should be and add it if it is
missing

◮ Start at the root

◮ At each node

◮ If the value is found, exit

◮ If v is smaller than the current value

◮ If left child exists, insert v in left subtree
◮ Otherwise, add a left child with value v



Search trees, inserting a value . . .

◮ To insert a value v , find where it should be and add it if it is
missing

◮ Start at the root

◮ At each node

◮ If the value is found, exit

◮ If v is smaller than the current value

◮ If left child exists, insert v in left subtree
◮ Otherwise, add a left child with value v

◮ If v is larger than the current value

◮ If right child exists, insert v in right subtree
◮ Otherwise, add a right child with value v



Search trees, inserting a value . . .

◮ To insert a value v , find where it should be and add it if it is
missing

◮ Start at the root

◮ At each node

◮ If the value is found, exit

◮ If v is smaller than the current value

◮ If left child exists, insert v in left subtree
◮ Otherwise, add a left child with value v

◮ If v is larger than the current value

◮ If right child exists, insert v in right subtree
◮ Otherwise, add a right child with value v

◮ Worst case: Number of steps is equal to the longest path
from the root to a leaf



Inserting into a search tree

◮ To insert a value, search for it to identify where it should go

inserttree :: Ord a => Stree a -> a -> Stree a

inserttree Nil v = Node Nil v Nil

inserttree (Node tl y tr) v

| v == y = Node tl y tr

| v < y = Node (inserttree tl v) y tr

| otherwise = Node tl y (inserttree tr v)

◮ inserttree returns the tree with the value inserted.



Search trees, deleting a value

◮ Deleting v from a tree



Search trees, deleting a value

◮ Deleting v from a tree

◮ If v does not match current node, inductively delete from left
or right subtree



Search trees, deleting a value

◮ Deleting v from a tree

◮ If v does not match current node, inductively delete from left
or right subtree

◮ What if v does match?

y == v

/ \

x z

/ \ / \

t1 t2 t3 t4

◮ What value should replace y?



Search trees, deleting a value

◮ Deleting v from a tree

◮ If v does not match current node, inductively delete from left
or right subtree

◮ What if v does match?

y == v

/ \

x z

/ \ / \

t1 t2 t3 t4

◮ What value should replace y?

◮ Cannot blindly shift up x or z



Search trees, deleting a value . . .

◮ Delete a value

41

23 51

17 34 48 62

33



Search trees, deleting a value . . .

◮ Delete a value
Delete 41

41

23 51

17 34 48 62

33



Search trees, deleting a value . . .

◮ Delete a value
Delete 41

41

23 51

17 34 48 62

33

41



Search trees, deleting a value . . .

◮ Delete a value
Delete 41
Cannot shift up 23

41

23 51

17 34 48 62

33

4123

23

34



Search trees, deleting a value . . .

◮ Delete a value
Delete 41
Cannot shift up 51

41

23 51

17 34 48 62

33

4151

51

48



Search trees, deleting a value . . .

y == v

/ \

x z

/ \ / \

t1 t2 t3 t4

◮ Cannot blindly shift up x or z

◮ Need to move up a value that is bigger than left and smaller
than right

◮ Move up maximum value in left subtree . . .
◮ . . . or minimum value in right subtree



Search trees, deleting a value . . .

◮ Delete a value

41

23 51

17 34 48 62

33



Search trees, deleting a value . . .

◮ Delete a value
Delete 41

41

23 51

17 34 48 62

33



Search trees, deleting a value . . .

◮ Delete a value
Delete 41

41

23 51

17 34 48 62

33

41



Search trees, deleting a value . . .

◮ Delete a value
Delete 41
Remove maximum value in left subtree, 34

41

23 51

17 34 48 62

41

3433

33

34



Search trees, deleting a value . . .

◮ Delete a value
Delete 41
Remove maximum value in left subtree, 34
. . . and use it to replace 41

41

23 51

17 34 48 62

41

3433

33

34



Search trees . . .

◮ Deleting the maximum value in a search tree



Search trees . . .

◮ Deleting the maximum value in a search tree

◮ Keep going right till you run out of values

◮ Rightmost value has no right subtree
◮ Replace rightmost value by its left subtree



Search trees . . .

◮ Deleting the maximum value in a search tree

◮ Keep going right till you run out of values

◮ Rightmost value has no right subtree
◮ Replace rightmost value by its left subtree

x

y

z

tx

ty

tz



Search trees . . .

◮ Deleting the maximum value in a search tree

◮ Keep going right till you run out of values

◮ Rightmost value has no right subtree
◮ Replace rightmost value by its left subtree

x

y

z

tx

ty

tz

⇒

x

y
tx

ty tz

z



Deleting maximum value in a search tree . . .

◮ deletemax

deletemax :: Ord a => Stree a -> (a ,Stree a)

-- We are at rightmost value

deletemax (Node t1 y Nil) = (y,t1)

-- We are not yet at rightmost value

deletemax (Node t1 y t2) = (z, Node t1 y tz)

where (z,tz) = deletemax t2



Deleting maximum value in a search tree . . .

◮ deletemax

deletemax :: Ord a => Stree a -> (a ,Stree a)

-- We are at rightmost value

deletemax (Node t1 y Nil) = (y,t1)

-- We are not yet at rightmost value

deletemax (Node t1 y t2) = (z, Node t1 y tz)

where (z,tz) = deletemax t2

◮ Note that deletemax returns the maximum value and the
modified tree



Search trees, deleting a value . . .

◮ To delete a value v



Search trees, deleting a value . . .

◮ To delete a value v

◮ Start at the root



Search trees, deleting a value . . .

◮ To delete a value v

◮ Start at the root

◮ At each node



Search trees, deleting a value . . .

◮ To delete a value v

◮ Start at the root

◮ At each node

◮ If v is smaller than the current value

◮ If left child exists, delete v from left subtree



Search trees, deleting a value . . .

◮ To delete a value v

◮ Start at the root

◮ At each node

◮ If v is smaller than the current value

◮ If left child exists, delete v from left subtree

◮ If v is larger than the current value

◮ If right child exists, delete v from right subtree



Search trees, deleting a value . . .

◮ To delete a value v

◮ Start at the root

◮ At each node

◮ If v is smaller than the current value

◮ If left child exists, delete v from left subtree

◮ If v is larger than the current value

◮ If right child exists, delete v from right subtree

◮ Otherwise, current value is v

◮ If there is no left child, shift up right subtree to current node
◮ If there is a left child

– Delete maximum value x from left subtree

– Replace current value v by x



Search trees, deleting a value . . .

◮ To delete a value v

◮ Start at the root

◮ At each node

◮ If v is smaller than the current value

◮ If left child exists, delete v from left subtree

◮ If v is larger than the current value

◮ If right child exists, delete v from right subtree

◮ Otherwise, current value is v

◮ If there is no left child, shift up right subtree to current node
◮ If there is a left child

– Delete maximum value x from left subtree

– Replace current value v by x



Search trees, deleting a value . . .

◮ To delete a value v

◮ Start at the root

◮ At each node

◮ If v is smaller than the current value

◮ If left child exists, delete v from left subtree

◮ If v is larger than the current value

◮ If right child exists, delete v from right subtree

◮ Otherwise, current value is v

◮ If there is no left child, shift up right subtree to current node
◮ If there is a left child

– Delete maximum value x from left subtree

– Replace current value v by x

◮ Worst case: Number of steps is equal to the longest path
from the root to a leaf



Deleting from a search tree

◮ deletetree — deletes a given value from the given tree and
returns the resulting tree

deletetree :: Ord a => Stree a -> a -> Stree a

deletetree Nil v = Nil

deletetree (Node tl y tr) v

| v < y = Node (deletetree tl v) y tr

| v > y = Node tl y (deletetree tr v)

-- In all cases below, we must have v == y

deletetree (Node Nil y tr) v = tr

deletetree (Node tl y tr) v = Node tx x tr

where (x,tx) = deletemax tl



Balance

◮ The complexity of all the operations depend on the height of
the tree.



Balance

◮ The complexity of all the operations depend on the height of
the tree.

◮ In general, a search tree will not be balanced



Balance

◮ The complexity of all the operations depend on the height of
the tree.

◮ In general, a search tree will not be balanced

◮ Inserting values in ascending or descending order results in
highly skewed tree

6

/

5

/

4

/

3

/

2

/

1



Balanced search trees . . .

◮ Ideally, for each node size of left and right subtrees differ by
at most one



Balanced search trees . . .

◮ Ideally, for each node size of left and right subtrees differ by
at most one

◮ Height of the tree is logarithmic in size.



Balanced search trees . . .

◮ Ideally, for each node size of left and right subtrees differ by
at most one

◮ Height of the tree is logarithmic in size.

Lemma: Let T be a size balanced tree with s nodes. The
height of T is at most log(s) + 1.



Balanced search trees . . .

◮ Ideally, for each node size of left and right subtrees differ by
at most one

◮ Height of the tree is logarithmic in size.

Lemma: Let T be a size balanced tree with s nodes. The
height of T is at most log(s) + 1.

Proof: By induction on the size s.



Balanced search trees . . .

◮ Ideally, for each node size of left and right subtrees differ by
at most one

◮ Height of the tree is logarithmic in size.

Lemma: Let T be a size balanced tree with s nodes. The
height of T is at most log(s) + 1.

Proof: By induction on the size s.
Basis: If s = 1 then the tree has height = 1



Balanced search trees . . .

◮ Ideally, for each node size of left and right subtrees differ by
at most one

◮ Height of the tree is logarithmic in size.

Lemma: Let T be a size balanced tree with s nodes. The
height of T is at most log(s) + 1.

Proof: By induction on the size s.
Basis: If s = 1 then the tree has height = 1
Induction: Let T have s nodes.



Balanced search trees . . .

◮ Ideally, for each node size of left and right subtrees differ by
at most one

◮ Height of the tree is logarithmic in size.

Lemma: Let T be a size balanced tree with s nodes. The
height of T is at most log(s) + 1.

Proof: By induction on the size s.
Basis: If s = 1 then the tree has height = 1
Induction: Let T have s nodes.
Consider the left and right subtrees of this tree.



Balanced search trees . . .

◮ Ideally, for each node size of left and right subtrees differ by
at most one

◮ Height of the tree is logarithmic in size.

Lemma: Let T be a size balanced tree with s nodes. The
height of T is at most log(s) + 1.

Proof: By induction on the size s.
Basis: If s = 1 then the tree has height = 1
Induction: Let T have s nodes.
Consider the left and right subtrees of this tree.
The largest of them has at most s/2 nodes. (Why?)



Balanced search trees . . .

◮ Ideally, for each node size of left and right subtrees differ by
at most one

◮ Height of the tree is logarithmic in size.

Lemma: Let T be a size balanced tree with s nodes. The
height of T is at most log(s) + 1.

Proof: By induction on the size s.
Basis: If s = 1 then the tree has height = 1
Induction: Let T have s nodes.
Consider the left and right subtrees of this tree.
The largest of them has at most s/2 nodes. (Why?)
So, both subtrees have height at most

log(s/2) + 1 = (log(s) + 1)− 1



Balanced search trees . . .

◮ Ideally, for each node size of left and right subtrees differ by
at most one

◮ Height of the tree is logarithmic in size.

Lemma: Let T be a size balanced tree with s nodes. The
height of T is at most log(s) + 1.

Proof: By induction on the size s.
Basis: If s = 1 then the tree has height = 1
Induction: Let T have s nodes.
Consider the left and right subtrees of this tree.
The largest of them has at most s/2 nodes. (Why?)
So, both subtrees have height at most

log(s/2) + 1 = (log(s) + 1)− 1

◮ However, it is not easy to maintain size-balance.



Height-balanced trees

◮ Maintain height balanced trees instead of size-balanced trees.

◮ Height of left subtree and height of right subtree differ by at
most one at any node.



Height-balanced trees

◮ Maintain height balanced trees instead of size-balanced trees.

◮ Height of left subtree and height of right subtree differ by at
most one at any node.

◮ Height is still logarithmic in size [Adelson-Velskii, Landis]



Height-balanced trees

◮ Maintain height balanced trees instead of size-balanced trees.

◮ Height of left subtree and height of right subtree differ by at
most one at any node.

◮ Height is still logarithmic in size [Adelson-Velskii, Landis]

◮ Somewhat easier to maintain.



Height balanced trees ...

4

/ \

2 5

/ \ \

1 3 6



Height balanced trees ...

4

/ \

2 5

/ \ \

1 3 6

◮ A height and weight balanced tree.



Height balanced trees ...

4

/ \

2 5

/ \ \

1 3 6

◮ A height and weight balanced tree.

4

/ \

2 5

/ \

1 3



Height balanced trees ...

4

/ \

2 5

/ \ \

1 3 6

◮ A height and weight balanced tree.

4

/ \

2 5

/ \

1 3

◮ A height balanced tree that is not weight balanced.



Height Balanced Trees ...



Height Balanced Trees ...

◮ Let S(h) be the size of the smallest height balanced tree with
height h.



Height Balanced Trees ...

◮ Let S(h) be the size of the smallest height balanced tree with
height h.

◮ S(0) = 0



Height Balanced Trees ...

◮ Let S(h) be the size of the smallest height balanced tree with
height h.

◮ S(0) = 0
◮ S(1) = 1



Height Balanced Trees ...

◮ Let S(h) be the size of the smallest height balanced tree with
height h.

◮ S(0) = 0
◮ S(1) = 1
◮ S(2) = 2



Height Balanced Trees ...

◮ Let S(h) be the size of the smallest height balanced tree with
height h.

◮ S(0) = 0
◮ S(1) = 1
◮ S(2) = 2

◮ If T is a height balanced tree of height h, then one of its two
subtrees has height h − 1 and the other has height at least
h − 2. So,



Height Balanced Trees ...

◮ Let S(h) be the size of the smallest height balanced tree with
height h.

◮ S(0) = 0
◮ S(1) = 1
◮ S(2) = 2

◮ If T is a height balanced tree of height h, then one of its two
subtrees has height h − 1 and the other has height at least
h − 2. So,

S(h) ≥ S(h − 1) + S(h − 2) + 1



Height Balanced Trees ...

◮ Let S(h) be the size of the smallest height balanced tree with
height h.

◮ S(0) = 0
◮ S(1) = 1
◮ S(2) = 2

◮ If T is a height balanced tree of height h, then one of its two
subtrees has height h − 1 and the other has height at least
h − 2. So,

S(h) ≥ S(h − 1) + S(h − 2) + 1

◮ Grows like the Fibonacci numbers, exponentially.



Height Balanced Trees ...

◮ Let S(h) be the size of the smallest height balanced tree with
height h.

◮ S(0) = 0
◮ S(1) = 1
◮ S(2) = 2

◮ If T is a height balanced tree of height h, then one of its two
subtrees has height h − 1 and the other has height at least
h − 2. So,

S(h) ≥ S(h − 1) + S(h − 2) + 1

◮ Grows like the Fibonacci numbers, exponentially.

◮ S(h) ≥ 2h/1.44 or equivalently

h(T ) ≤ 1.44log(s(T ))



Height Balanced trees . . .

◮ Use tree rotations to maintain height balance



Height Balanced trees . . .

◮ Use tree rotations to maintain height balance

◮ Example: rotate right

x

y

t1 t2

t3 ⇒

y

x

t1

t2 t3



Height Balanced trees . . .

◮ Use tree rotations to maintain height balance

◮ Example: rotate right

x

y

t1 t2

t3 ⇒

y

x

t1

t2 t3

◮ Useful if t1 has large height.



Height Balanced trees . . .

◮ Use tree rotations to maintain height balance

◮ Example: rotate right

x

y

t1 t2

t3 ⇒

y

x

t1

t2 t3

◮ Useful if t1 has large height.

◮ rotateright (Node (Node t1 y t2) x t3) =

Node t1 y (Node t2 x t3)



Balanced search trees . . .

◮ Use tree rotations to maintain height balance

◮ Example: rotate left

x

y

t1 t2

t3 ⇐

y

x

t1

t2 t3

◮ Useful if t3 has large height.



Balanced search trees . . .

◮ Use tree rotations to maintain height balance

◮ Example: rotate left

x

y

t1 t2

t3 ⇐

y

x

t1

t2 t3

◮ Useful if t3 has large height.

◮ rotateleft (Node t1 y (Node t2 x t3)) =

Node (Node t1 y t2) x t3



Balanced search trees . . .

◮ Use tree rotations to maintain height balance

◮ Example: rotate left

x

y

t1 t2

t3 ⇐

y

x

t1

t2 t3

◮ Useful if t3 has large height.

◮ rotateleft (Node t1 y (Node t2 x t3)) =

Node (Node t1 y t2) x t3


