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What is Sudoku?

A simple but addictive puzzle, invented in the 
USA in 1979 and called Number Place;

Became popular in Japan in 1986, where it was 
renamed Sudoku (~ “single number”); 

First appeared in UK newspapers in 2004, and 
became an international craze in 2005.



3

Example

Fill in the grid so that every row, column and box 
contains each of the numbers 1 to 9:

2         1   3 8
                5
  7       6      
              1 3
  9 8 1     2 5 7
3 1         8    
9     8       2  
  5     6 9 7 8 4
4     2 5        
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Example

Fill in the grid so that every row, column and box 
contains each of the numbers 1 to 9:

2         1   3 8
                5
  7       6      
              1 3
  9 8 1     2 5 7
3 1         8    
9     8       2  
  5     6 9 7 8 4
4     2 5        

What number 
must go here?
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Example

Fill in the grid so that every row, column and box 
contains each of the numbers 1 to 9:

2         1   3 8
                5
  7       6      
              1 3
  9 8 1     2 5 7
3 1         8    
9     8       2  
  5     6 9 7 8 4
4     2 5        

1, as 2 and 3 
already appear 
in this column.

1
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Example

Fill in the grid so that every row, column and box 
contains each of the numbers 1 to 9:

2         1   3 8
                5
  7       6      
              1 3
  9 8 1     2 5 7
3 1         8    
9     8       2  
1 5     6 9 7 8 4
4     2 5        
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Example

Fill in the grid so that every row, column and box 
contains each of the numbers 1 to 9:

2         1   3 8
                5
  7       6      
              1 3
  9 8 1     2 5 7
3 1         8    
9     8       2  
1 5     6 9 7 8 4
4     2 5        

3
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Example

Fill in the grid so that every row, column and box 
contains each of the numbers 1 to 9:

2         1   3 8
                5
  7       6      
              1 3
  9 8 1     2 5 7
3 1         8    
9     8       2  
1 5   3 6 9 7 8 4
4     2 5        
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Example

Fill in the grid so that every row, column and box 
contains each of the numbers 1 to 9:

2         1   3 8
                5
  7       6      
              1 3
  9 8 1     2 5 7
3 1         8    
9     8       2  
1 5   3 6 9 7 8 4
4     2 5        

2
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Example

Fill in the grid so that every row, column and box 
contains each of the numbers 1 to 9:

2         1   3 8
                5
  7       6      
              1 3
  9 8 1     2 5 7
3 1         8    
9     8       2  
1 5 2 3 6 9 7 8 4
4     2 5        

And so on…
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Example

Fill in the grid so that every row, column and box 
contains each of the numbers 1 to 9:

2 4 9 5 7 1 6 3 8
8 6 1 4 3 2 9 7 5
5 7 3 9 8 6 1 4 2
7 2 5 6 9 8 4 1 3
6 9 8 1 4 3 2 5 7
3 1 4 7 2 5 8 6 9
9 3 7 8 1 4 2 5 6
1 5 2 3 6 9 7 8 4
4 8 6 2 5 7 3 9 1

The unique 
solution for this 

easy puzzle.
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This Talk

We show how to develop a program that can 
solve any Sudoku puzzle in an instant;

Start with a simple but impractical program, 
which is improved in a series of steps; 

Emphasis on pictures rather than code, plus 
some lessons about algorithm design.
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Representing a Grid

type Grid      =  Matrix Char

type Matrix a  =  [Row a]

type Row a     =  [a]

A grid is essentially a list of lists, but 
matrices and rows will be useful later on.
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Examples

easy  :: Grid
easy   = [ "2    1 38" ,
           "        5" ,
           " 7   6   " ,
           " 13      " ,
           " 981  257" ,
           "31    8  " ,
           "9  8   2 " ,
           " 5  69784" , 
           "4 25     " ]

empty :: Grid
empty  = replicate 9 (replicate 9 ' ')
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Extracting Rows

rows  :: Matrix a  [Row a]
rows m = m

 1  2  3  4

 5  6  7  8

 9 10 11 12

13 14 15 16

 1  2  3  4

 5  6  7  8

 9 10 11 12

13 14 15 16
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… Columns

cols  :: Matrix a  [Row a]
cols m = transpose m

 1  2  3  4

 5  6  7  8

 9 10 11 12

13 14 15 16

 1  5  9 13

 2  6 10 14

 3  7 11 15

 4  8 12 16



17

… And Boxes

boxs  :: Matrix a  [Row a]
boxs m = <omitted>

 1  2  3  4

 5  6  7  8

 9 10 11 12

13 14 15 16

 1  2  5  6

 3  4  7  8

 9 10 13 14

11 12 15 16
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Validity Checking

Let us say that a grid is valid if it has no duplicate 
entries in any row, column or box:

valid  :: Grid  Bool
valid g = all nodups (rows g) 
          all nodups (cols g) 
          all nodups (boxs g)

A direct implementation, 
without concern for efficiency.
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Making Choices

Replace each blank square in a grid by all possible 
numbers 1 to 9 for that square:

choices :: Grid  Matrix [Char]

1 2 3
4 5 6   3
7 8 9
      1 2 3
  4   4 5 6
      7 8 9

    
        3
 
       
  4    
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Collapsing Choices

Transform a matrix of lists into a list of matrices by 
considering all combinations of choices:

collapse :: Matrix [a]  [Matrix a]

1 3
4 1

2 3
4 2

2 3
4 1

1 3
4 2

1 2  3

 4  1 2
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A Brute Force Solver

solve :: Grid  [Grid]
solve  = filter valid . collapse . choices

Consider all possible choices for each 
blank square, collapse the resulting 

matrix, then filter out the valid grids.
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Does It Work?

> solve easy

ERROR: out of memory

Simple, but 
impractical!

The easy example has 51 blank squares, resulting in 
951 grids to consider, which is a huge number:

4638397686588101979328150167890591454318967698009
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Reducing The Search Space

Many choices that are considered will conflict 
with entries provided in the initial grid;

For example, an initial entry of 1 precludes 
another 1 in the same row, column or box; 

Pruning such invalid choices before collapsing 
will considerably reduce the search space.



24

Pruning

Remove all choices that occur as single entries in 
the corresponding row, column or box:

prune :: Matrix [Char]  Matrix [Char]

 1  1 2 4

1 3  3 4

 1   2 4

 3   3 4
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And Again

Pruning may leave new single entries, so it makes 
sense to iterate the pruning process:

 1   2 4

 3   3 4
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And Again

Pruning may leave new single entries, so it makes 
sense to iterate the pruning process:

 1   2 4

 3    4
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And Again

Pruning may leave new single entries, so it makes 
sense to iterate the pruning process:

 1    2 

 3    4
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And Again

Pruning may leave new single entries, so it makes 
sense to iterate the pruning process:

 1    2

 3    4

We have now 
reached a fixpoint of 
the pruning function.
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An Improved Solver

solve’ :: Grid  [Grid]
solve’  =

  filter valid . collapse . fix prune . choices

For the easy example, the pruning process alone is 
enough to completely solve the puzzle:

> solve’ easy
Terminates 
instantly!
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But…

> solve' gentle

No solution after 
two hours - we need 

to think further!

For a gentle example, pruning leaves around 381 
grids to consider, which is still a huge number:

443426488243037769948249630619149892803
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Reducing The Search Space

After pruning there may still be many choices 
that can never lead to a solution;

But such bad choices will be duplicated many 
times during the collapsing process;

Discarding these bad choices is the key to 
obtaining an efficient Sudoku solver.
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Blocked Matrices

Let us say that a matrix is blocked if some square 
has no choices left, or if some row, column, or 
box has a duplicated single choice:

Key idea - a blocked 
matrix can never 
lead to a solution.

 1  1 2  1

3 4      3
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Expanding One Choice

Transform a matrix of lists into a list of matrices by 
expanding the first square with choices:

expand :: Matrix [a]  [Matrix [a]]

1 2  3

 4  1 2

 2   3

 4  1 2

 1   3

 4  1 2
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Our Final Solver

solve’’ :: Grid  [Grid]
solve’’  = search . prune . choices

search :: Matrix [Char]  [Grid]
search m

  | blocked m  = []

  | complete m = collapse m

  | otherwise  = [g | m'  expand m
                    , g   search (prune m')]



35

Notes

Using fix prune rather than prune makes the  
program run slower in this case;

No need to filter out valid grids, because they 
are guaranteed to be valid by construction; 

This program can now solve any newspaper 
Sudoku puzzle in an instant!
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The Result
This program has
saved my life - 

my Sudoku 
addiction is finally 

cured!!

Subliminal Message

Haskell is the world's greatest 
programming language.
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