
Introduction to Programming: Lecture 3

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

13 Aug 2013

http://www.cmi.ac.in/~kumar

Polymorphism in Haskell

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

Polymorphism in Haskell

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

Polymorphism in Haskell

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []

myinit (x:xs) = x:(myinit xs)

Polymorphism in Haskell

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit [x] = []

myinit (x:xs) = x:(myinit xs)

◮ These functions work over any list.

Polymorphism in Haskell

mylength :: [a] -> Int

mylength [] = 0

mylength (x:xs) = 1 + mylength xs

myreverse :: [a] -> [a]

myreverse [] = []

myreverse (x:xs) = (myreverse xs) ++ [x]

myinit :: [a] -> [a]

myinit [x] = []

myinit (x:xs) = x:(myinit xs)

The datatype Char

◮ Written within single quotes

◮ ’a’, ’3’, ’%’, ’#’, . . .

The datatype Char

◮ Written within single quotes

◮ ’a’, ’3’, ’%’, ’#’, . . .

◮ As usual, characters are stored as a table (e.g., ASCII)

The datatype Char

◮ Written within single quotes

◮ ’a’, ’3’, ’%’, ’#’, . . .

◮ As usual, characters are stored as a table (e.g., ASCII)

◮ Functions ord and chr to go between characters and table
ord :: Char -> Int

chr :: Int -> Char

The datatype Char

◮ Written within single quotes

◮ ’a’, ’3’, ’%’, ’#’, . . .

◮ As usual, characters are stored as a table (e.g., ASCII)

◮ Functions ord and chr to go between characters and table
ord :: Char -> Int

chr :: Int -> Char
◮ These functions are inverses of each other

c == chr(ord c) and i == ord (chr i)

Note: Need to import Char to use these

The datatype Char

◮ Written within single quotes

◮ ’a’, ’3’, ’%’, ’#’, . . .

◮ As usual, characters are stored as a table (e.g., ASCII)

◮ Functions ord and chr to go between characters and table
ord :: Char -> Int

chr :: Int -> Char
◮ These functions are inverses of each other

c == chr(ord c) and i == ord (chr i)

Note: Need to import Char to use these

◮ Assume ’a’, ’b’, . . . , ’z’ occur consecutively.
◮ Assume ’A’, ’B’, . . . , ’Z’ occur consecutively.
◮ Assume ’0’, ’1’, . . . , ’9’ occur consecutively.

Functions using Char

◮ capitalize converts ’a’ to ’A’ etc

Functions using Char

◮ capitalize converts ’a’ to ’A’ etc

◮ A “brute force” solution using pattern matching

capitalize :: Char -> Char

capitalize ’a’ = ’A’

capitalize ’b’ = ’B’

...

capitalize ’z’ = ’Z’

capitalize c = c

Functions using Char

◮ capitalize converts ’a’ to ’A’ etc

◮ A “brute force” solution using pattern matching

capitalize :: Char -> Char

capitalize ’a’ = ’A’

capitalize ’b’ = ’B’

...

capitalize ’z’ = ’Z’

capitalize c = c

◮ A smarter solution: ’a’,. . . ,’z’ and ’A’,. . . ,’Z’ are
contiguous

Functions using Char

◮ capitalize converts ’a’ to ’A’ etc

◮ A “brute force” solution using pattern matching

capitalize :: Char -> Char

capitalize ’a’ = ’A’

capitalize ’b’ = ’B’

...

capitalize ’z’ = ’Z’

capitalize c = c

◮ A smarter solution: ’a’,. . . ,’z’ and ’A’,. . . ,’Z’ are
contiguous

capitalize :: Char -> Char

capitalize c

| (’a’ <= c && c <= ’z’) =

chr (ord c + (ord ’A’ - ord ’a’))

| otherwise = c

Strings

◮ String is a synonym for [Char]

◮ Can write [’h’,’e’,’l’,’l’,’o’] as "hello"

Strings

◮ String is a synonym for [Char]

◮ Can write [’h’,’e’,’l’,’l’,’o’] as "hello"

◮ All list functions work on String

◮ length, reverse, ++, . . .

Strings

◮ String is a synonym for [Char]

◮ Can write [’h’,’e’,’l’,’l’,’o’] as "hello"

◮ All list functions work on String

◮ length, reverse, ++, . . .

◮ Check if a character exists in a string

exists :: Char -> String -> Bool

Strings

◮ String is a synonym for [Char]

◮ Can write [’h’,’e’,’l’,’l’,’o’] as "hello"

◮ All list functions work on String

◮ length, reverse, ++, . . .

◮ Check if a character exists in a string

exists :: Char -> String -> Bool

exists c "" = False

exists c (x:xs)

| c == x = True

| otherwise = exists c xs

Strings

◮ String is a synonym for [Char]

◮ Can write [’h’,’e’,’l’,’l’,’o’] as "hello"

◮ All list functions work on String

◮ length, reverse, ++, . . .

◮ Check if a character exists in a string

exists :: Char -> String -> Bool

exists c "" = False

exists c (x:xs)

| c == x = True

| otherwise = exists c xs

◮ Convert a string to uppercase

touppercase :: String -> String

Strings

◮ String is a synonym for [Char]

◮ Can write [’h’,’e’,’l’,’l’,’o’] as "hello"

◮ All list functions work on String

◮ length, reverse, ++, . . .

◮ Check if a character exists in a string

exists :: Char -> String -> Bool

exists c "" = False

exists c (x:xs)

| c == x = True

| otherwise = exists c xs

◮ Convert a string to uppercase

touppercase :: String -> String

touppercase "" = ""

touppercase (c:cs) = (capitalize c):(touppercase cs)

List functions: map

◮ touppercase applies capitalize to each character in list

List functions: map

◮ touppercase applies capitalize to each character in list

sqrlist :: [Int] -> [Int]

sqrlist [] = []

sqrlist (x:xs) = sqr x : (sqrlist xs)

List functions: map

◮ touppercase applies capitalize to each character in list

sqrlist :: [Int] -> [Int]

sqrlist [] = []

sqrlist (x:xs) = sqr x : (sqrlist xs)

◮ sqrlist applies sqr to each number in the list

List functions: map

◮ touppercase applies capitalize to each character in list

sqrlist :: [Int] -> [Int]

sqrlist [] = []

sqrlist (x:xs) = sqr x : (sqrlist xs)

◮ sqrlist applies sqr to each number in the list

◮ Builtin function map

map f [x0,x1,..,xk] = [(f x0),(f x1),...,(f xk)]

List functions: map

◮ touppercase applies capitalize to each character in list

sqrlist :: [Int] -> [Int]

sqrlist [] = []

sqrlist (x:xs) = sqr x : (sqrlist xs)

◮ sqrlist applies sqr to each number in the list

◮ Builtin function map

map f [x0,x1,..,xk] = [(f x0),(f x1),...,(f xk)]

◮ Note that first argument of map is a function.

List functions: map

◮ touppercase applies capitalize to each character in list

sqrlist :: [Int] -> [Int]

sqrlist [] = []

sqrlist (x:xs) = sqr x : (sqrlist xs)

◮ sqrlist applies sqr to each number in the list

◮ Builtin function map

map f [x0,x1,..,xk] = [(f x0),(f x1),...,(f xk)]

◮ Note that first argument of map is a function.

Higher-order functions.

Examples

◮ Recall that the type of + is Int -> Int -> Int

Examples

◮ Recall that the type of + is Int -> Int -> Int

◮ So, + applied to an integer n gives a function of type

Int -> Int

Examples

◮ Recall that the type of + is Int -> Int -> Int

◮ So, + applied to an integer n gives a function of type

Int -> Int

◮ The notation for this function is (+ n)

map (+ 3) [2,6,8] = [5,9,11]

map (* 2) [2,6,8] = [4,12,16]

Examples

◮ Sum of the length of the lists in the given list of lists.

sumLength:: [[a]] -> Int

Examples

◮ Sum of the length of the lists in the given list of lists.

sumLength:: [[a]] -> Int

sumLength [] = 0

sumLength (x:xs) = length x + (sumLength xs)

Examples

◮ Sum of the length of the lists in the given list of lists.

sumLength:: [[a]] -> Int

sumLength [] = 0

sumLength (x:xs) = length x + (sumLength xs)

◮ Can be written using map as:

sumLength l = sum (map length l)

The function map

map f [] = []

map f (x:xs) = (f x):(map f xs)

The function map

map f [] = []

map f (x:xs) = (f x):(map f xs)

◮ What is the type of map?

The function map

map f [] = []

map f (x:xs) = (f x):(map f xs)

◮ What is the type of map?

map :: (a -> b) -> [a] -> [b]

List functions: filter

◮ Select items from a list based on a property

◮ filter selects all items from l that satisfy p

filter p [] = []

filter p (x:xs)

| (p x) = x:(filter p xs)

| otherwise = filter p xs

List functions: filter

◮ Select items from a list based on a property

◮ filter selects all items from l that satisfy p

filter p [] = []

filter p (x:xs)

| (p x) = x:(filter p xs)

| otherwise = filter p xs

◮ filter is also an higher-order function.

filter :: (a -> Bool) -> [a] -> [a]

List functions: filter

◮ Select items from a list based on a property

◮ filter selects all items from l that satisfy p

filter p [] = []

filter p (x:xs)

| (p x) = x:(filter p xs)

| otherwise = filter p xs

◮ filter is also an higher-order function.

filter :: (a -> Bool) -> [a] -> [a]

◮ evenonly l = filter iseven l

iseven :: Int -> Bool

iseven n = (mod n 2 == 0)

List functions: filter

◮ Select items from a list based on a property

◮ filter selects all items from l that satisfy p

filter p [] = []

filter p (x:xs)

| (p x) = x:(filter p xs)

| otherwise = filter p xs

◮ filter is also an higher-order function.

filter :: (a -> Bool) -> [a] -> [a]

◮ evenonly l = filter iseven l

iseven :: Int -> Bool

iseven n = (mod n 2 == 0)

Combining map and filter

◮ Extract all the vowels in the input and captialize them.

Combining map and filter

◮ Extract all the vowels in the input and captialize them.

◮ Solution: Use filter to extract the vowels and use map to
capitalize them.

Combining map and filter

◮ Extract all the vowels in the input and captialize them.

◮ Solution: Use filter to extract the vowels and use map to
capitalize them.

capvow :: [Char] -> [Char]

capvow l = map touppercase (filter isvowel l)

isvowel :: Char -> Char

isvowel c = (c==’a’) || (c==’e’) || (c==’i’)

|| (c==’o’) || (c==’u’)

Combining map and filter

◮ The list of squares of even numbers in ls

Combining map and filter

◮ The list of squares of even numbers in ls

sqreven :: [Int] -> [Int]

sqreven ls = map sqr (filter iseven ls)

Example: Counting words

◮ A function wordc to count the number of words in a given
string.

Example: Counting words

◮ A function wordc to count the number of words in a given
string.

◮ Assume that words are separated by white spaces. i.e.

’ ’, ’\t’, ’\n’

Example: Counting words

◮ A function wordc to count the number of words in a given
string.

◮ Assume that words are separated by white spaces. i.e.

’ ’, ’\t’, ’\n’

◮ Suppose

whitespace ’ ’ = True

whitespace ’\t’ = True

whitespace ’\n’ = True

whitespace _ = False

Example: Counting words

◮ A function wordc to count the number of words in a given
string.

◮ Assume that words are separated by white spaces. i.e.

’ ’, ’\t’, ’\n’

◮ Suppose

whitespace ’ ’ = True

whitespace ’\t’ = True

whitespace ’\n’ = True

whitespace _ = False

◮ Can we simply count the number of white spaces?

Example: Counting words

◮ A function wordc to count the number of words in a given
string.

◮ Assume that words are separated by white spaces. i.e.

’ ’, ’\t’, ’\n’

◮ Suppose

whitespace ’ ’ = True

whitespace ’\t’ = True

whitespace ’\n’ = True

whitespace _ = False

◮ Can we simply count the number of white spaces?

◮ NO. Consider "abc d".

Word Count: counting whitespace

◮ wspace counts the number of whitespaces in the given input.

◮ wspace [] = 0

wspace (x:xs)

| whitespace x = 1 + wspace xs

| otherwise = wspace xs

Word Count: counting whitespace

◮ wspace counts the number of whitespaces in the given input.

◮ wspace [] = 0

wspace (x:xs)

| whitespace x = 1 + wspace xs

| otherwise = wspace xs

◮ wspace l = length (filter whitespace l)

Word Count

◮ If you are outside (any word) then whitespace characters can
be ignored.

Word Count

◮ If you are outside (any word) then whitespace characters can
be ignored.

◮ If you are inside a word then non-whitespace characters can
be ignored.

Word Count

◮ If you are outside (any word) then whitespace characters can
be ignored.

◮ If you are inside a word then non-whitespace characters can
be ignored.

◮ If you are outside and you encounter a non-whitespace it
marks the beginning of a word.

Word Count

◮ If you are outside (any word) then whitespace characters can
be ignored.

◮ If you are inside a word then non-whitespace characters can
be ignored.

◮ If you are outside and you encounter a non-whitespace it
marks the beginning of a word.

◮ If you are inside and you encouter a whitespace it marks the
ending of a word.

Word Count

◮ If you are outside (any word) then whitespace characters can
be ignored.

◮ If you are inside a word then non-whitespace characters can
be ignored.

◮ If you are outside and you encounter a non-whitespace it
marks the beginning of a word.

◮ If you are inside and you encouter a whitespace it marks the
ending of a word.

◮ Count the number of word beginnings.

Word Count: general case ...

◮ Functions to keep track of the current position (inside or
outside a word.)

Word Count: general case ...

◮ Functions to keep track of the current position (inside or
outside a word.)

inwordAux :: Int -> String -> Int

inwordAux i [] = i

inwordAux i (c:cs)

| whitespace c = outwordAux i cs

| otherwise = inwordAux i cs

outwordAux :: Int -> String -> Int

outwordAux i [] = i

outwordAux i (c:cs)

| whitespace c = outwordAux i cs

| otherwise = inwordAux (i+1) cs

Word Count: general case ...

◮ Functions to keep track of the current position (inside or
outside a word.)

inwordAux :: Int -> String -> Int

inwordAux i [] = i

inwordAux i (c:cs)

| whitespace c = outwordAux i cs

| otherwise = inwordAux i cs

outwordAux :: Int -> String -> Int

outwordAux i [] = i

outwordAux i (c:cs)

| whitespace c = outwordAux i cs

| otherwise = inwordAux (i+1) cs

wordc l = outwordAux 0 l

Word Count: A direct solution

◮ The action to be taken on reading a character also depends
on the previous character.

Word Count: A direct solution

◮ The action to be taken on reading a character also depends
on the previous character.

◮ Suppose w denotes whitespace and c denotes a non-white
space, then

Word Count: A direct solution

◮ The action to be taken on reading a character also depends
on the previous character.

◮ Suppose w denotes whitespace and c denotes a non-white
space, then

Previous Current Action

w w Do Nothing

w c Increment

c c Do Nothing

c w Do Nothing

Word Count: A direct solution

◮ The action to be taken on reading a character also depends
on the previous character.

◮ Suppose w denotes whitespace and c denotes a non-white
space, then

Previous Current Action

w w Do Nothing

w c Increment

c c Do Nothing

c w Do Nothing

◮ An Haskell implementation:

wordcAux (x:y:xs)

| ws x && not (ws y) = 1 + wordcAux (y:xs)

| otherwise = wordcAux (y:xs)

Word Count: A direct solution

◮ The action to be taken on reading a character also depends
on the previous character.

◮ Suppose w denotes whitespace and c denotes a non-white
space, then

Previous Current Action

w w Do Nothing

w c Increment

c c Do Nothing

c w Do Nothing

◮ An Haskell implementation:

wordcAux [x] = 0

wordcAux (x:y:xs)

| ws x && not (ws y) = 1 + wordcAux (y:xs)

| otherwise = wordcAux (y:xs)

wordc l = wordcAux (’ ’:l)

Combining the elements of List

sumlist :: [Int] -> Int

sumlist [] = 0

sumlist (x:xs) = x + (sumlist xs)

multlist :: [Int] -> Int

multlist [] = 1

multlist (x:xs) = x * (multlist xs)

◮ What is the common pattern across these definitions?

Combining the elements of List

sumlist :: [Int] -> Int

sumlist [] = 0

sumlist (x:xs) = x + (sumlist xs)

multlist :: [Int] -> Int

multlist [] = 1

multlist (x:xs) = x * (multlist xs)

◮ What is the common pattern across these definitions?

combine f v [] = v

combine f v (x:xs) = f x (combine f v xs)

Combining the elements of List

sumlist :: [Int] -> Int

sumlist [] = 0

sumlist (x:xs) = x + (sumlist xs)

multlist :: [Int] -> Int

multlist [] = 1

multlist (x:xs) = x * (multlist xs)

◮ What is the common pattern across these definitions?

combine f v [] = v

combine f v (x:xs) = f x (combine f v xs)

sumlist ls = combine (+) 0 ls

multlist ls = combine (*) 1 ls

foldr is the Library version of combine

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

foldr is the Library version of combine

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

x1 x2 ... xn-1 xn v

f

yn

f

yn-1

...

y2

f

y1

