
Introduction to Programming: Lecture 1

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

06 Aug 2013

http://www.cmi.ac.in/~kumar

About this course ...

About this course ...

◮ Learn programming

About this course ...

◮ Learn programming in Haskell

About this course ...

◮ Learn programming in Haskell

◮ Learn to think algorithmically.

About this course ...

◮ Learn programming in Haskell

◮ Learn to think algorithmically.

Evaluation

About this course ...

◮ Learn programming in Haskell

◮ Learn to think algorithmically.

Evaluation

◮ About 50% weightage to assignments.

◮ About 50% weightage to exams.

References

References

◮ Lecture notes written for this course by Madhavan Mukund.
(Available at
http://www.cmi.ac.in/~madhavan/courses/programming08)

http://www.cmi.ac.in/~madhavan/courses/programming08

References

◮ Lecture notes written for this course by Madhavan Mukund.
(Available at
http://www.cmi.ac.in/~madhavan/courses/programming08)

◮ Online archive at http://www.haskell.org

◮ Online book at http://learnyouahaskell.com

http://www.cmi.ac.in/~madhavan/courses/programming08
http://www.haskell.org
http://learnyouahaskell.com

References

◮ Lecture notes written for this course by Madhavan Mukund.
(Available at
http://www.cmi.ac.in/~madhavan/courses/programming08)

◮ Online archive at http://www.haskell.org

◮ Online book at http://learnyouahaskell.com

◮ Introduction to Functional Programming using Haskell by
Richard Bird.

◮ A Gentle Introduction to Haskell by Paul Hudak et al.

◮ Real-world Haskell by Bryan O’Sullivan, John Goerzen and
Don Stewart.

http://www.cmi.ac.in/~madhavan/courses/programming08
http://www.haskell.org
http://learnyouahaskell.com

Programs as functions

Functions transform inputs to outputs:

x f f(x)

Programs as functions

Functions transform inputs to outputs:

x f f(x)

A typical program consists of rules to produce an output from an
input

Programs as functions

Functions transform inputs to outputs:

x f f(x)

A typical program consists of rules to produce an output from an
input

Computation is the process of applying the rules described by a
program

Building up programs

How do we describe the rules?

Building up programs

How do we describe the rules?

◮ Start with basic “built in” functions

Building up programs

How do we describe the rules?

◮ Start with basic “built in” functions

◮ Use these to build more complex functions

Building up programs . . .

Suppose

Building up programs . . .

Suppose

◮ . . . there were the whole numbers, {0,1,2,...}

Building up programs . . .

Suppose

◮ . . . there were the whole numbers, {0,1,2,...}

◮ . . . and one function, succ (successor)

succ 0 = 1

succ 1 = 2

succ 2 = 3

. . .

Building up programs . . .

Suppose

◮ . . . there were the whole numbers, {0,1,2,...}

◮ . . . and one function, succ (successor)

succ 0 = 1

succ 1 = 2

succ 2 = 3

. . .

Then, we may define plusTwo, as

plusTwo n = succ (succ n)

by composing two copies of succ.

Building up programs . . .

Suppose

◮ . . . there were the whole numbers, {0,1,2,...}

◮ . . . and one function, succ (successor)

succ 0 = 1

succ 1 = 2

succ 2 = 3

. . .

Then, we may define plusTwo, as

plusTwo n = succ (succ n)

by composing two copies of succ.

Composing plusTwo and succ we get

plusThree n = succ (plusTwo n)

Addition....

◮ plus n m means apply succ to n m times

Addition....

◮ plus n m means apply succ to n m times

plus n m = succ(succ(...(succ
︸ ︷︷ ︸

m times

n)...))

Addition....

◮ plus n m means apply succ to n m times

plus n m = succ(succ(...(succ
︸ ︷︷ ︸

m times

n)...))

◮ How do we describe this rule concisely for all n and m?

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

◮ Suppose we know how to compute plus n m

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

◮ Suppose we know how to compute plus n m

Then plus n (succ m) is

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

◮ Suppose we know how to compute plus n m

Then plus n (succ m) is succ (plus n m)

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

◮ Suppose we know how to compute plus n m

Then plus n (succ m) is succ (plus n m)

Unravelling the definition yields a computation

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

◮ Suppose we know how to compute plus n m

Then plus n (succ m) is succ (plus n m)

Unravelling the definition yields a computation

◮ plus 7 3 =

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

◮ Suppose we know how to compute plus n m

Then plus n (succ m) is succ (plus n m)

Unravelling the definition yields a computation

◮ plus 7 3 = plus 7 (succ 2)

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

◮ Suppose we know how to compute plus n m

Then plus n (succ m) is succ (plus n m)

Unravelling the definition yields a computation

◮ plus 7 3 = plus 7 (succ 2)

= succ (plus 7 2)

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

◮ Suppose we know how to compute plus n m

Then plus n (succ m) is succ (plus n m)

Unravelling the definition yields a computation

◮ plus 7 3 = plus 7 (succ 2)

= succ (plus 7 2)

= succ (plus 7 (succ 1))

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

◮ Suppose we know how to compute plus n m

Then plus n (succ m) is succ (plus n m)

Unravelling the definition yields a computation

◮ plus 7 3 = plus 7 (succ 2)

= succ (plus 7 2)

= succ (plus 7 (succ 1))

= succ (succ (plus 7 1))

= succ (succ (plus 7 (succ 0)))

= succ (succ (succ (plus 7 0)))

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

◮ Suppose we know how to compute plus n m

Then plus n (succ m) is succ (plus n m)

Unravelling the definition yields a computation

◮ plus 7 3 = plus 7 (succ 2)

= succ (plus 7 2)

= succ (plus 7 (succ 1))

= succ (succ (plus 7 1))

= succ (succ (plus 7 (succ 0)))

= succ (succ (succ (plus 7 0)))

= succ (succ (succ 7)) = succ (succ 8)

= succ 9

Recursive definitions

Goal: Define plus n 0, plus n 1, . . . , plus n i, . . . for each i

◮ plus n 0 = n, for every n

◮ plus n 1 = succ n = succ (plus n 0) , for every n

◮ Suppose we know how to compute plus n m

Then plus n (succ m) is succ (plus n m)

Unravelling the definition yields a computation

◮ plus 7 3 = plus 7 (succ 2)

= succ (plus 7 2)

= succ (plus 7 (succ 1))

= succ (succ (plus 7 1))

= succ (succ (plus 7 (succ 0)))

= succ (succ (succ (plus 7 0)))

= succ (succ (succ 7)) = succ (succ 8)

= succ 9 = 10

Recursive definitions . . .

Multiplication is repeated addition

mult n m = plus n (plus n (...(plus n
︸ ︷︷ ︸

m times

0)...))

Recursive definitions . . .

Multiplication is repeated addition

mult n m = plus n (plus n (...(plus n
︸ ︷︷ ︸

m times

0)...))

The rule for multiplication

◮ mult n 0 = 0, for all n

◮ mult n (succ m) = plus n (mult n m), for all n and m

Types

Functions operate on values of a fixed type

Types

Functions operate on values of a fixed type

◮ succ takes a whole number as input and produces a whole
number

◮ plus and mult take two whole numbers as input and produce
another whole number

Types

Functions operate on values of a fixed type

◮ succ takes a whole number as input and produces a whole
number

◮ plus and mult take two whole numbers as input and produce
another whole number

What if we wanted to define sqrt, the square root function?

Types

Functions operate on values of a fixed type

◮ succ takes a whole number as input and produces a whole
number

◮ plus and mult take two whole numbers as input and produce
another whole number

What if we wanted to define sqrt, the square root function?

◮ Even if we restrict the input to whole numbers, output will be
a real number

Types

Functions operate on values of a fixed type

◮ succ takes a whole number as input and produces a whole
number

◮ plus and mult take two whole numbers as input and produce
another whole number

What if we wanted to define sqrt, the square root function?

◮ Even if we restrict the input to whole numbers, output will be
a real number

Other types

◮ capitalize ’a’ = ’A’, capitalize ’b’ = ’B’, . . .

◮ Inputs and outputs are letters or “characters”

Functional programming

Haskell: a programming language for describing functions

Functional programming

Haskell: a programming language for describing functions

A description in Haskell of a function f has two parts:

1. Types of inputs and outputs

2. Rule for computing the output from the input

Functional programming

Haskell: a programming language for describing functions

A description in Haskell of a function f has two parts:

1. Types of inputs and outputs

2. Rule for computing the output from the input

Example:

sqr :: Int -> Int Type definition
sqr x = x*x Computation rule

Basic types and operations in Haskell

◮ Int Integers

◮ Operations +, -, *
◮ Functions div, mod
◮ Note: / takes two Ints as input and produces a Float

◮ Float

◮ Char

◮ Values written in single quotes — ’z’, ’&’, . . .

◮ Bool

◮ Values True and False.
◮ Operations &&, ||, not

Defining functions

◮ Boolean expressions

◮ Comparisons on Int: ==, /=, <, <=, >, >=

◮ Boolean combinations && (and), || (or) and not (negation).

Defining functions

◮ Boolean expressions

◮ Comparisons on Int: ==, /=, <, <=, >, >=

◮ Boolean combinations && (and), || (or) and not (negation).

◮ xor takes two arguments of Bool and checks that exactly one
of them is True

Defining functions

◮ Boolean expressions

◮ Comparisons on Int: ==, /=, <, <=, >, >=

◮ Boolean combinations && (and), || (or) and not (negation).

◮ xor takes two arguments of Bool and checks that exactly one
of them is True

xor :: Bool -> Bool -> Bool

xor b1 b2 = (b1 && (not b2)) || ((not b1) && b2)

Defining functions

◮ Boolean expressions

◮ Comparisons on Int: ==, /=, <, <=, >, >=

◮ Boolean combinations && (and), || (or) and not (negation).

◮ xor takes two arguments of Bool and checks that exactly one
of them is True

xor :: Bool -> Bool -> Bool

xor b1 b2 = (b1 && (not b2)) || ((not b1) && b2)

◮ inorder takes three arguments of Int and checks that the
numbers are in order

Defining functions

◮ Boolean expressions

◮ Comparisons on Int: ==, /=, <, <=, >, >=

◮ Boolean combinations && (and), || (or) and not (negation).

◮ xor takes two arguments of Bool and checks that exactly one
of them is True

xor :: Bool -> Bool -> Bool

xor b1 b2 = (b1 && (not b2)) || ((not b1) && b2)

◮ inorder takes three arguments of Int and checks that the
numbers are in order

inorder:: Int -> Int -> Int -> Bool

inorder x y z = (x <= y) && (y <= z)

Definition by cases: Pattern matching

◮ Defining by pattern matching

xor :: Bool -> Bool -> Bool

xor True False = True

xor False True = True

xor b1 b2 = False

Definition by cases: Pattern matching

◮ Defining by pattern matching

xor :: Bool -> Bool -> Bool

xor True False = True

xor False True = True

xor b1 b2 = False

◮ When does an invocation match a definition?

◮ If definition argument is a constant, the value supplied must
be the same constant

◮ If definition argument is a variable, any value supplied matches
(and is substituted for that variable)

Definition by cases: Pattern matching

◮ Defining by pattern matching

xor :: Bool -> Bool -> Bool

xor True False = True

xor False True = True

xor b1 b2 = False

◮ When does an invocation match a definition?

◮ If definition argument is a constant, the value supplied must
be the same constant

◮ If definition argument is a variable, any value supplied matches
(and is substituted for that variable)

◮ Use first definition that matches, top to bottom

◮ xor False True matches second definition

◮ xor True True matches third definition

Definition by cases: Pattern matching

◮ Can mix variables and constants in patterns

Definition by cases: Pattern matching

◮ Can mix variables and constants in patterns

or :: Bool -> Bool -> Bool

or True b = True

or b True = True

or b1 b2 = False

Definition by cases: Pattern matching

◮ Can mix variables and constants in patterns

or :: Bool -> Bool -> Bool

or True b = True

or b True = True

or b1 b2 = False

◮ or True False matches first definition

Definition by cases: Pattern matching

◮ Can mix variables and constants in patterns

or :: Bool -> Bool -> Bool

or True b = True

or b True = True

or b1 b2 = False

◮ or True False matches first definition

◮ or False True matches second definition

Definition by cases: Pattern matching

◮ Can mix variables and constants in patterns

or :: Bool -> Bool -> Bool

or True b = True

or b True = True

or b1 b2 = False

◮ or True False matches first definition

◮ or False True matches second definition

◮ or False False matches third definition

Definition by cases: Pattern matching

and :: Bool -> Bool -> Bool

and True b = b

and False b = False

Recursive definitions

◮ As we saw earlier, many functions are defined recursively

◮ Base case: Explicit value for f (0)
◮ Inductive step: Define f (n) in terms of n and f (n−1),. . . , f (0)

Recursive definitions

◮ As we saw earlier, many functions are defined recursively

◮ Base case: Explicit value for f (0)
◮ Inductive step: Define f (n) in terms of n and f (n−1),. . . , f (0)

◮ For example, factorial

◮ 0! = 1
◮ n! = n · (n−1)!

Recursive definitions

◮ As we saw earlier, many functions are defined recursively

◮ Base case: Explicit value for f (0)
◮ Inductive step: Define f (n) in terms of n and f (n−1),. . . , f (0)

◮ For example, factorial

◮ 0! = 1
◮ n! = n · (n−1)!

◮ In Haskell

factorial :: Int -> Int

factorial 0 = 1

factorial n = n * (factorial (n-1))

Recursive definitions

◮ As we saw earlier, many functions are defined recursively

◮ Base case: Explicit value for f (0)
◮ Inductive step: Define f (n) in terms of n and f (n−1),. . . , f (0)

◮ For example, factorial

◮ 0! = 1
◮ n! = n · (n−1)!

◮ In Haskell

factorial :: Int -> Int

factorial 0 = 1

factorial n = n * (factorial (n-1))

◮ Note the bracketing in factorial (n-1)

◮ factorial n-1 would be bracketed as (factorial n) -1

Recursive definitions

◮ As we saw earlier, many functions are defined recursively

◮ Base case: Explicit value for f (0)
◮ Inductive step: Define f (n) in terms of n and f (n−1),. . . , f (0)

◮ For example, factorial

◮ 0! = 1
◮ n! = n · (n−1)!

◮ In Haskell

factorial :: Int -> Int

factorial 0 = 1

factorial n = n * (factorial (n-1))

◮ Note the bracketing in factorial (n-1)

◮ factorial n-1 would be bracketed as (factorial n) -1

◮ No guarantee of termination!

◮ What does factorial (-1) generate?

Functions with multiple inputs

plus m n = m + n

◮ What is the type of plus?

◮ Mathematically, plus : Z× Z → Z

◮ Need to know arity of functions

Functions with multiple inputs . . .

◮ Assume all functions take only one argument!

Functions with multiple inputs . . .

◮ Assume all functions take only one argument!

plus m n = m + n

Functions with multiple inputs . . .

◮ Assume all functions take only one argument!

plus m n = m + n

m plus

plus m

n

m+n

Functions with multiple inputs . . .

◮ Assume all functions take only one argument!

plus m n = m + n

m plus

plus m

n

m+n

◮ Type of plus

◮ plus m: input is Int, output is Int

Functions with multiple inputs . . .

◮ Assume all functions take only one argument!

plus m n = m + n

m plus

plus m

n

m+n

◮ Type of plus

◮ plus m: input is Int, output is Int
◮ plus: input is Int, output is a function Int -> Int

Functions with multiple inputs . . .

◮ Assume all functions take only one argument!

plus m n = m + n

m plus

plus m

n

m+n

◮ Type of plus

◮ plus m: input is Int, output is Int
◮ plus: input is Int, output is a function Int -> Int
◮ plus :: Int -> (Int -> Int)

Functions with multiple inputs . . .

◮ tplus m n p = m + n + p

m tplus

tplus m

n

tplus m n

p

m+n+p

◮ tplus m n p :: Int -> (Int -> (Int -> Int))

Running Haskell programs

◮ Write your Haskell program using a text editor

◮ vi, Notepad, . . .

◮ Store it in a file with extension .hs

Running Haskell programs

◮ Write your Haskell program using a text editor

◮ vi, Notepad, . . .

◮ Store it in a file with extension .hs

◮ Use the interactive interpreter ghci

◮ Within ghci you can type the following commands:

:load filename — Loads a Haskell file
:type expression — Print the type of a Haskell expression
:quit — exit from ghci

:? — Print ”help” about more ghci commands

Running Haskell programs

◮ Write your Haskell program using a text editor

◮ vi, Notepad, . . .

◮ Store it in a file with extension .hs

◮ Use the interactive interpreter ghci

◮ Within ghci you can type the following commands:

:load filename — Loads a Haskell file
:type expression — Print the type of a Haskell expression
:quit — exit from ghci

:? — Print ”help” about more ghci commands

◮ Experiment with ghci as a “calculator”

Conditional definitions

◮ Conditional definitions using guards

◮ For instance, “fix” the function to work for negative inputs

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 0 = n * (factorial (n-1))

Conditional definitions

◮ Conditional definitions using guards

◮ For instance, “fix” the function to work for negative inputs

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 0 = n * (factorial (n-1))

◮ Second definition has two parts

◮ Each part is guarded by a condition
◮ Guards are tested top to bottom

Conditional definitions

◮ Conditional definitions using guards

◮ For instance, “fix” the function to work for negative inputs

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 0 = n * (factorial (n-1))

◮ Second definition has two parts

◮ Each part is guarded by a condition
◮ Guards are tested top to bottom

◮ Indentation to show that definition continues on multiple lines

Conditional definitions

◮ Conditional definitions using guards

◮ For instance, “fix” the function to work for negative inputs

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 0 = n * (factorial (n-1))

◮ Second definition has two parts

◮ Each part is guarded by a condition
◮ Guards are tested top to bottom

◮ Indentation to show that definition continues on multiple lines

◮ Multiple definitions could have different forms

◮ Pattern matching for factorial 0
◮ Conditional definition for factorial n

Conditional definitions . . .

◮ Guards may overlap

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 1 = n * (factorial (n-1))

| n > 0 = n * (factorial (n-1))

Conditional definitions . . .

◮ Guards may overlap

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 1 = n * (factorial (n-1))

| n > 0 = n * (factorial (n-1))

◮ Guards may not cover all cases

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 1 = n * (factorial (n-1))

Conditional definitions . . .

◮ Guards may overlap

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 1 = n * (factorial (n-1))

| n > 0 = n * (factorial (n-1))

◮ Guards may not cover all cases

factorial :: Int -> Int

factorial 0 = 1

factorial n

| n < 0 = factorial (-n)

| n > 1 = n * (factorial (n-1))

◮ No match for factorial 1

Program error: pattern match failure: factorial 1

