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List Comprehension

I Pick all the even numbers from a list of integers:

evenonly = filter iseven

I This is far more obscure than

{x | x ∈ L, iseven(x)}

I Haskell allows you write this almost verbatim.

evenonly l = [x | x <- l, iseven x]

sqeven l = [x*x | x <- l, iseven x]

I This notation for constructing new lists from existing lists
through filtering and mapping is called list comprehension.
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Examples

I List of pairs of integers below 10

[(x,y) | x<-[1..10], y<-[1..10]]

Multiple lists can be used.

I We can write concat as follows:

concat l = [x | y <- l, x <- y]

I The set of Pythogorean triples below 100

[(x,y,z) | x<-[1..100], y<-[1..100], z<-[1..100],

x*x + y*y == z*z]

Oops, that produces duplicates.

[(x,y,z) | x<-[1..100], y<-[(x+1)..100],

z<-[(y+1)..100], x*x + y*y == z*z]
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Examples ...

I Divisors of n

divisors n = [x | x <- [1..n], (mod n x) == 0]

I Primes below n

primes n = [x | x <- [1..n], (divisors x == [1,x])]

I Quicksort

quicksort [] = []

quicksort (x:xs) = (quicksort l)++[x]++(quicksort u)

where

l = [y | y <- xs, y < x]

u = [y | y <- xs, y >= x]
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List comprehension ...

evenlist l = [ (x:xs) | (x:xs) <- l,

(mod (length (x:xs)) 2) == 0 ]

I Extract all even length non-empty lists from a given list of
lists.

headOfeven = [ x | (x:xs) <- l,

(mod (length (x:xs)) 2) == 0 ]

I Extract the head of all the even length lists in a given list of
lists.
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List comprehension ...

I List comprehension does not look like a functional definition.

I How is a list comprehension reduced?

I In what order are the expressions evaluated?
I What is the complexity of a program written using list

comprehension?

I List comprehension is actually a defined construct and can be
translated using map, filter and concat
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Translating list comprehension

I A list comprehension has the form

[e | q1, q2, ..., qN]

where each qi is a qualifier.

I A qualifier is either
I a boolean expression b or
I of the form p <- l where p is a pattern and l is a list valued

expression.

[(x,y,z) | x<-[1..100], y<-[(x+1)..100],

z<-[(y+1)..100], x*x + y*y == z*z]
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Translation ...

I A boolean condition acts as a filter.

[e | b,Q] = if b then [e | Q] else []

It depends only on qualifiers that appeared to its left.

I Every matching pattern p of l generates a possible set of
candidates for the answer.

[e | p <- l, Q] = concat (map f l)

where

f p = [e | Q]

f _ = []

I Finally, the base case.

[e|] = [e]
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Example

I Consider

[ x | (x:xs) <- l, (mod (length (x:xs)) 2) == 0 ]

I Using the rule for e <- l

concat (map f l)

where

f (x:xs) = [x | (mod (length (x:xs)) 2) == 0 ]

f _ = []

I Using the rule for b

concat (map f l)

where

f (x:xs) = if ((mod (length (x:xs)) 2) == 0)

then [x|] else []

f _ = []



Example

I Consider

[ x | (x:xs) <- l, (mod (length (x:xs)) 2) == 0 ]

I Using the rule for e <- l

concat (map f l)

where

f (x:xs) = [x | (mod (length (x:xs)) 2) == 0 ]

f _ = []

I Using the rule for b

concat (map f l)

where

f (x:xs) = if ((mod (length (x:xs)) 2) == 0)

then [x|] else []

f _ = []



Example

I Consider

[ x | (x:xs) <- l, (mod (length (x:xs)) 2) == 0 ]

I Using the rule for e <- l

concat (map f l)

where

f (x:xs) = [x | (mod (length (x:xs)) 2) == 0 ]

f _ = []

I Using the rule for b

concat (map f l)

where

f (x:xs) = if ((mod (length (x:xs)) 2) == 0)

then [x|] else []

f _ = []



Example

concat (map f l)

where

f (x:xs) = if ((mod (length (x:xs)) 2) == 0)

then [x|] else []

f _ = []

I Finally

concat (map f l)

where

f (x:xs) = if ((mod (length (x:xs)) 2) == 0)

then [x] else []

f _ = []



Example

I Consider
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Example ...

I Applying the rule for boolean condition we get

concat (map f [1..100])

where

f x = concat (map g [(x+1)..100])

where

g y = if (x*x == y) then [(x,y)|] else []
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Example: Sieve

I The famous Sieve algorithm to find primes works as follows:

I Consider the numbers

{2, 3, 4, . . .}
I Repeatedly pick the left most element and

I output it as prime
I delete all its multiples from the list

I Precisely the list of primes are output.

I In Haskell,

primes = sieve [2..]

where

sieve (x:xs) =

x : (sieve [ y | y <- xs, mod y x > 0 ])

I But this is an infinite list (?)

I Lazy evaluation to the rescue!
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